Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Littlewood-Paley decomposition; Besov-type space; Triebel-Lizorkin-type space
Summary:
We prove that in the homogeneous Besov-type space the set of bounded functions constitutes a unital quasi-Banach algebra for the pointwise product. The same result holds for the homogeneous Triebel-Lizorkin-type space.
References:
[1] Bensaid, F., Moussai, M.: Realizations of the homogeneous Besov-type spaces. Methods Appl. Anal. 26 (2019), 349-370. DOI 10.4310/maa.2019.v26.n4.a3 | MR 4100094 | Zbl 1455.46032
[2] Bergh, G., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften 223. Springer, Berlin (1976). DOI 10.1007/978-3-642-66451-9 | MR 482275 | Zbl 0344.46071
[3] Bourdaud, G., Moussai, M., Sickel, W.: Composition operators on Lizorkin-Triebel spaces. J. Funct. Anal. 259 (2010), 1098-1128. DOI 10.1016/j.jfa.2010.04.008 | MR 2652183 | Zbl 1219.47092
[4] Bourdaud, G., Moussai, M., Sickel, W.: Composition operators acting on Besov spaces on the real line. Ann. Mat. Pura Appl. (4) 193 (2014), 1519-1554. DOI 10.1007/s10231-013-0342-x | MR 3262646 | Zbl 1314.46038
[5] Baraka, A. El: An embedding theorem for Campanato spaces. Electron. J. Differ. Equ. 66 (2002), Article ID 66, 17 pages. MR 1921139 | Zbl 1002.46024
[6] Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777-799. DOI 10.1512/iumj.1985.34.34041 | MR 808825 | Zbl 0551.46018
[7] Moussai, M.: Composition operators on Besov algebras. Rev. Mat. Iberoam. 28 (2012), 239-272. DOI 10.4171/RMI/676 | MR 2904140 | Zbl 1238.47040
[8] Moussai, M.: Realizations of homogeneous Besov and Triebel-Lizorkin spaces and an application to pointwise multipliers. Anal. Appl., Singap. 13 (2015), 149-183. DOI 10.1142/s0219530514500250 | MR 3319662 | Zbl 1348.46039
[9] Moussai, M.: Composition operators on Besov spaces in the limiting case $s=1+1/p$. Stud. Math. 241 (2018), 1-15. DOI 10.4064/sm8136-4-2017 | MR 3732927 | Zbl 1415.46024
[10] Peetre, J.: New Thoughts on Besov Spaces. Duke University Mathematics Series I. Duke University, Durham (1976). MR 0461123 | Zbl 0356.46038
[11] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications 3. Walter de Gruyter, Berlin (1996). DOI 10.1515/9783110812411 | MR 1419319 | Zbl 0873.35001
[12] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). DOI 10.1007/978-3-0346-0416-1 | MR 0781540 | Zbl 0546.46027
[13] Triebel, H.: Theory of Function Spaces II. Monographs in Mathematics 84. Birkhäuser, Basel (1992). DOI 10.1007/978-3-0346-0419-2 | MR 1163193 | Zbl 0763.46025
[14] Yang, D., Yuan, W.: New Besov-type spaces and Triebel-Lizorkin-type spaces including $Q$ spaces. Math. Z. 265 (2010), 451-480. DOI 10.1007/s00209-009-0524-9 | MR 2609320 | Zbl 1191.42011
[15] Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics 2005. Springer, Berlin (2010). DOI 10.1007/978-3-642-14606-0 | MR 2683024 | Zbl 1207.46002
Partner of
EuDML logo