Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Frobenius-Perron theorem; special module; fusion ring
Summary:
Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$.
References:
[1] Cao, L. F., Chen, H. X., Li, L. B.: The cell modules of the Green algebra of Drinfel'd quantum double $D(H_4)$. Acta Math. Sin., Engl. Ser. 38 (2022), 1116-1132. DOI 10.1007/s10114-022-9046-8 | MR 4444202 | Zbl 07550664
[2] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. Mathematical Surveys and Monographs 205. AMS, Providence (2015). DOI 10.1090/surv/205 | MR 3242743 | Zbl 1365.18001
[3] Frobenius, G.: Über Matrizen aus positiven Elementen. Berl. Ber. 1908 (1908), 471-476 German \99999JFM99999 39.0213.03 \goodbreak.
[4] Frobenius, G.: Über Matrizen aus positiven Elementen. II. Berl. Ber. German 1909 (1909), 514-518 \99999JFM99999 40.0202.02.
[5] Gantmacher, F. R.: The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, Providence (1998). MR 1657129 | Zbl 0927.15001
[6] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), 165-184. DOI 10.1007/BF01390031 | MR 0560412 | Zbl 0499.20035
[7] Kildetoft, K., Mazorchuk, V.: Special modules over positively based algebras. Doc. Math. 21 (2016), 1171-1192. DOI 10.4171/DM/555 | MR 3578210 | Zbl 1369.16016
[8] Kudryavtseva, G., Mazorchuk, V.: On multisemigroups. Port. Math. (N.S.) 72 (2015), 47-80. DOI 10.4171/PM/1956 | MR 3323510 | Zbl 1333.20070
[9] Lin, S., Yang, S.: Representations of a class of positively based algebras. Czech. Math. J. 73 (2023), 811-838. DOI 10.21136/CMJ.2023.0254-22 | MR 4632859 | Zbl 7729539
[10] Liu, Z., Palcoux, S., Ren, Y.: Interpolated family of non group-like simple integral fusion rings of Lie type. Available at https://arxiv.org/abs/2102.01663 (2021), 29 pages. MR 4591939
[11] Lorenz, M.: Some applications of Frobenius algebras to Hopf algebras. Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. DOI 10.1090/conm/537 | MR 2799106 | Zbl 1254.16014
[12] Lusztig, G.: Leading coefficients of character values of Hecke algebras. Representations of Finite Groups Proceedings of Symposia in Pure Mathematics 47. AMS, Providence (1987), 235-262. MR 0933415 | Zbl 0657.20037
[13] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories. Compos. Math. 147 (2011), 1519-1545. DOI 10.1112/S0010437X11005586 | MR 2834731 | Zbl 1232.17015
[14] Perron, O.: Zur Theorie der Matrices. Math. Ann. 64 (1907), 248-263 German \99999JFM99999 38.0202.01. DOI 10.1007/BF01449896 | MR 1511438
Partner of
EuDML logo