Previous |  Up |  Next

Article

Title: Duality for a fractional variational formulation using $\eta $-approximated method (English)
Author: Khatri, Sony
Author: Prasad, Ashish Kumar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 5
Year: 2023
Pages: 700-722
Summary lang: English
.
Category: math
.
Summary: The present article explores the way $\eta$-approximated method is applied to substantiate duality results for the fractional variational problems under invexity. $\eta$-approximated dual pair is engineered and a careful study of the original dual pair has been done to establish the duality results for original problems. Moreover, an appropriate example is constructed based on which we can validate the established dual statements. The paper includes several recent results as special cases. (English)
Keyword: duality
Keyword: variational problem
Keyword: optimal solution
MSC: 49J40
MSC: 49N15
MSC: 90C32
MSC: 90C46
idZBL: Zbl 07790657
idMR: MR4681018
DOI: 10.14736/kyb-2023-5-0700
.
Date available: 2023-12-12T15:56:59Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151983
.
Reference: [1] Antczak, T.: A new approach to multiobjective programming with a modified objective function..J. Global Optim. 27 (2003), 485-495. MR 2012818,
Reference: [2] Antczak, T.: An $\eta$-approximation approach for nonlinear mathematical programming problems involving invex functions..Numer. Funct. Anal. Optim, 25 (2004), 423-438. MR 2106268,
Reference: [3] Antczak, T.: A new method of solving nonlinear mathematical programming problems involving $r$-invex functions..Journal of Mathematical Analysis and Applications 311 (2005), 313-323. MR 2165479,
Reference: [4] Antczak, T.: Saddle point criteria in an $\eta$-approximation method for nonlinear mathematical programming problems involving invex functions..J. Optim. Theory Appl, 132 (2007), 71-87. MR 2303801,
Reference: [5] Antczak, T.: On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems..J. Global Optim. 59 (2014), 757-785. MR 3226830,
Reference: [6] Antczak, T., Michalak, A.: $\eta$-Approximation method for non-convex multiobjective variational problems..Numer. Funct. Anal. Optim. 38 (2017), 1125-1142. MR 3673740,
Reference: [7] Bector, C. R., Husain, I.: Duality for multiobjective variational problems..J. Math. Anal. Appl. 166 (1992), 214-229. MR 1159648,
Reference: [8] Chandra, S., Craven, B. D., Husain, I.: Continuous programming containing arbitrary norms..J. Austral. Math. Soc. 39 (1985), 28-38. MR 0786973,
Reference: [9] Dorn, W. S.: A symmetric dual theorem for quadratic programs..J. Oper. Res. Soc. Japan 2 (1960), 93-97. MR 0120038
Reference: [10] Ghosh, M. K., Shaiju, A. J.: Existence of value and saddle point in infinite-dimensional differential games..J. Optim. Theory Appl. 121 (2004), 301-325. Zbl 1099.91023, MR 2085280,
Reference: [11] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions..J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849, 10.1016/0022-247X(81)90123-2
Reference: [12] Husain, I., Ahmed, A.: Mixed type duality for a variational problem with strong pseudoinvex constraints..Soochow J. Math. 32 (2006), 589-603. MR 2265973
Reference: [13] Jayswal, A., Antczak, T., Jha, S.: On equivalence between a variational problem and its modified variational problem with the $\eta$-objective function under invexity..Int. Trans. Oper. Res. 26 (2019), 2053-2070. MR 3939131,
Reference: [14] Jha, S., Das, P., Antczak, T.: Exponential type duality for $\eta$-approximated variational problems..Yugoslav J. Oper. Res. 30 (2019), 19-43. MR 4063168,
Reference: [15] Khazafi, K., Rueda, N., Enflo, P.: Sufficiency and duality for multiobjective control problems under generalized (B, $\rho$)-type I functions..J. Global Optim. 46 (2010), 111-132. MR 2566139,
Reference: [16] Li, T., Wang, Y., Liang, Z., Pardalos, P. M.: Local saddle point and a class of convexification methods for nonconvex optimization problems..J. Global Optim. 38 (2007), 405-419. Zbl 1175.90317, MR 2328021,
Reference: [17] Mond, B., Chandra, S., Husain, I.: Duality for variational problems with invexity..J. Math. Anal. Appl. 134 (1988), 322-328. MR 0961341,
Reference: [18] Mond, B., Hanson, M. A.: Duality for variational problems..J. Math. Anal. Appl. 18 (1967), 355-364. MR 0209943,
Reference: [19] Mond, B., Weir, T.: Generalized concavity and duality..In: Generalized Concavity in Optimization and Economics, (S. Schaible and W. T. Ziemba, eds.), Academic Press, New York 1981, pp. 263-279. MR 0652702
Reference: [20] Mond, B., Husain, I.: Sufficient optimality criteria and duality for variational problems with generalized invexity..J. Austral. Math. Soc. 31 (1989), 108-121. MR 1002095,
Reference: [21] Nahak, C., Nanda, S.: Duality for multiobjective variational problems with invexity..Optimization 36 (1996), 235-248. MR 1419265,
Reference: [22] Nahak, C., Behera, N.: Optimality conditions and duality for multiobjective variational problems with generalized $\rho-(\eta,\theta)$ - B-type-I functions..J. Control Sci. Engrg. Article ID 497376 (2011), 11 pages. MR 2795387,
Reference: [23] Zalmai, G. J.: Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems..Optimization 30 (1994), 15-51. MR 1277803,
Reference: [24] Zhian, L., Qingkai, Y.: Duality for a class of multiobjective control problems with generalized invexity..J. Math. Anal. Appl. 256 (2001), 446-461. MR 1821749,
.

Files

Files Size Format View
Kybernetika_59-2023-5_3.pdf 414.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo