Previous |  Up |  Next

Article

Title: An elementary proof of Marcellini Sbordone semicontinuity theorem (English)
Author: Roskovec, Tomáš G.
Author: Soudský, Filip
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 5
Year: 2023
Pages: 723-736
Summary lang: English
.
Category: math
.
Summary: The weak lower semicontinuity of the functional $$ F(u)=\int_{\Omega}f(x,u,\nabla u) {\rm d} x $$ is a classical topic that was studied thoroughly. It was shown that if the function $f$ is continuous and convex in the last variable, the functional is sequentially weakly lower semicontinuous on $W^{1,p}(\Omega)$. However, the known proofs use advanced instruments of real and functional analysis. Our aim here is to present a proof understandable even for students familiar only with the elementary measure theory. (English)
Keyword: convexity
Keyword: sequential semicontinuity
Keyword: calculus of variation
Keyword: minimizer
MSC: 46E35
MSC: 49J20
MSC: 49J45
idZBL: Zbl 07790658
idMR: MR4681019
DOI: 10.14736/kyb-2023-5-0723
.
Date available: 2023-12-12T15:59:32Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151984
.
Reference: [1] Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations..Arch. Rational Mech. Anal. 86 (1984), 2, 125-145. MR 0751305,
Reference: [2] Alibert, J.-J., Dacorogna, B.: An example of a quasiconvex function that is not polyconvex in two dimensions..Arch. Rational Mech. Anal. 117 (1992), 2, 155-166. MR 1145109,
Reference: [3] Ball, J. M., Kirchheim, B., Kristensen, J.: Regularity of quasiconvex envelopes..Calc. Var. Partial Differential Equations 11 (2000), 4, 333-359. MR 1808126,
Reference: [4] Benešová, B., Kružík, M.: Weak lower semicontinuity of integral functionals and applications..SIAM Rev. 59 (2017), 4, 703-766. MR 3720354,
Reference: [5] Bourdin, B., Francfort, G. A., Marigo, J.-J.: The variational approach to fracture..J. Elasticity 91 (2008), 1-3, 5-148. MR 2390547,
Reference: [6] Dacorogna, B.: Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals..Lecture Notes in Mathematics Vol. 922, Springer-Verlag, Berlin - New York 1982. MR 0658130, 10.1007/BFb0096144
Reference: [7] Dacorogna, B.: Direct Methods in the Calculus of Variations, Vol. 78..Springer Science and Business Media, 2007. MR 2361288,
Reference: [8] Bois-Reymond, P. du: Erläuterungen zu den anfangsgründen der variationsrechnung..Math. Ann. 15 (1879), 2, 283-314. MR 1510012,
Reference: [9] Eisen, G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals..Manuscripta Math. 27 (1979), 1, 73-79. MR 0524978,
Reference: [10] Ekeland, I.: On the variational principle..J. Math. Anal. Appl. 47 (1974), 324-353. Zbl 0286.49015, MR 0346619, 10.1016/0022-247X(74)90025-0
Reference: [11] Ekeland, I.: Nonconvex minimization problems..Bull. Amer. Math. Soc. (N.S.) 1 (1979), 3, 443-474. Zbl 0441.49011, MR 0526967,
Reference: [12] Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels..Collection Études Mathématiques. Dunod, Paris, Gauthier-Villars, Paris - Brussels - Montreal 1974. MR 0463993
Reference: [13] Fonseca, I., Malý, J.: Relaxation of multiple integrals below the growth exponent..Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), 3, 309-338. MR 1450951, 10.1016/s0294-1449(97)80139-4
Reference: [14] Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity, and Young measures..SIAM J. Math. Anal. 30 (1999), 6, 1355-1390. MR 1718306,
Reference: [15] Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals..Acta Math. 148 (1982), 31-46. MR 0666107,
Reference: [16] Giusti, E.: Direct Methods in the Calculus of Variations..World Scientific, 2003. MR 1962933
Reference: [17] Grabovsky, Y.: From microstructure-independent formulas for composite materials to rank-one convex, non-quasiconvex functions..Arch. Ration. Mech. Anal. 227 (2018), 2, 607-636. MR 3740383,
Reference: [18] Guerra, A., Kristensen, J.: Automatic quasiconvexity of homogeneous isotropic rank-one convex integrands..Arch. Ration. Mech. Anal. 245 (2022), 1, 479-500. MR 4444078,
Reference: [19] Kałamajska, A.: On lower semicontinuity of multiple integrals..Colloq. Math. 74 (1997), 1, 71-78. MR 1455456,
Reference: [20] Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions..Math. Ann. 313 (1999), 4, 653-710. MR 1686943,
Reference: [21] Kristensen, J.: A necessary and sufficient condition for lower semicontinuity..Nonlinear Anal. 120 (2015), 43-56. MR 3348045,
Reference: [22] Kristensen, J., Rindler, F.: Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and BV..Arch. Ration. Mech. Anal. 197 (2010), 2, 539-598. MR 2660519,
Reference: [23] Lagrange, J. L.: Mécanique analytique, Vol. 1..Mallet - Bachelier, 1853. MR 2858305
Reference: [24] Leoni, G.: A First Course in Sobolev Spaces, Vol. 181 Graduate Studies in Mathematics. (Second edition.).American Mathematical Society, Providence 2017. MR 3726909
Reference: [25] Lukeš, J., Malý, J.: Measure and Integral. (Second edition.).Matfyzpress, Prague 2005. MR 2316454
Reference: [26] Marcellini, P.: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals..Manuscr. Math. 51 (1985), 1-3, 1-28. MR 0788671, 10.1007/BF01168345
Reference: [27] Marcellini, P., Sbordone, C.: Semicontinuity problems in the calculus of variations..Nonlinear Anal. 4 (1980), 2, 241-257. MR 0563807,
Reference: [28] Meyers, N. G.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order..Trans. Amer. Math. Soc. 119 (1965), 125-149. MR 0188838,
Reference: [29] Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations..Appl. Math. 51 (2006), 4, 355-426. MR 2291779,
Reference: [30] Morrey, Ch. B., Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals..Pacific J. Math. 2 (1952), 25-53. MR 0054865,
Reference: [31] Prinari, F.: On the lower semicontinuity and approximation of $L^\infty$-functionals..NoDEA Nonlinear Differential Equations Appl. 22 (2015), 6, 1591-1605. MR 3415015,
Reference: [32] Serrin, J.: On the definition and properties of certain variational integrals..Trans. Amer. Math. Soc. 101 (1961), 139-167. MR 0138018,
Reference: [33] Sil, S.: Calculus of variations: a differential form approach..Adv. Calc. Var. 12 (2019), 1, 57-84. MR 3898186, 10.1515/acv-2016-0058
Reference: [34] Tonelli, L.: La semicontinuità nel calcolo delle variazioni..Rendiconti del Circolo Matematico di Palermo (1884-1940), 44 (1920), 1, 167-249.
Reference: [35] Verde, A., Zecca, G.: Lower semicontinuity of certain quasiconvex functionals in Orlicz-Sobolev spaces..Nonlinear Anal. 71 (2009), 10, 4515-4524. MR 2548683,
Reference: [36] Šverák, V.: Rank-one convexity does not imply quasiconvexity..Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 1-2, 185-189. MR 1149994
.

Files

Files Size Format View
Kybernetika_59-2023-5_4.pdf 471.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo