[5] Dezső, G.:
The Darboux-Ionescu problem for a third order system of hyperbolic equations. Libertas Math. 21 (2001), 27-33.
MR 1867764 |
Zbl 0994.35080
[7] Jonesco, D. V.:
Sur une classe d'équations fonctionnelles. Annales Toulouse (3) 19 (1927), 39-92 French \99999JFM99999 53.0477.03.
DOI 10.5802/afst.343 |
MR 1508394
[16] Lungu, N., Rus, I. A.:
Ulam stability of nonlinear hyperbolic partial differential equations. Carpatian J. Math. 24 (2008), 403-408.
Zbl 1249.35219
[21] Rus, I. A.:
On a problem of Darboux-Ionescu. Stud. Univ. Babeş-Bolyai Math. 26 (1981), 43-45.
MR 0653967 |
Zbl 0534.35018
[23] Rus, I. A.:
Fixed points, upper and lower fixed points: Abstract Gronwall lemmas. Carpathian J. Math. 20 (2004), 125-134.
MR 2138535 |
Zbl 1113.54304
[24] Rus, I. A.:
Ulam stability of ordinary differential equations. Stud. Univ. Babeş-Bolyai Math. 54 (2009), 125-133.
MR 2602351 |
Zbl 1224.34165
[25] Teodoru, G.:
The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order. Fixed Point Theory 7 (2006), 127-146.
MR 2242321 |
Zbl 1113.35116
[26] Zada, A., Ali, W., Park, C.:
Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type. Appl. Math. Comput. 350 (2019), 60-65.
DOI 10.1016/j.amc.2019.01.014 |
MR 3899985 |
Zbl 1428.34087