Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
orthogonal idempotent matrix; nilpotent matrix; matrix ring; feebly nil-clean ring
Summary:
A ring $R$ is feebly nil-clean if for any $a\in R$ there exist two orthogonal idempotents $e,f\in R$ and a nilpotent $w\in R$ such that $a=e-f+w$. Let $R$ be a 2-primal feebly nil-clean ring. We prove that every matrix ring over $R$ is feebly nil-clean. The result for rings of bounded index is also obtained. These provide many classes of rings over which every matrix is the sum of orthogonal idempotent and nilpotent matrices.
References:
[1] Abyzov, A. N., Mukhametgaliev, I. I.: On some matrix analogs of the little Fermat theorem. Math. Notes 101 (2017), 187-192. DOI 10.1134/S0001434617010229 | MR 3608014 | Zbl 1365.16024
[2] Arora, N., Kundu, S.: Commutative feebly clean rings. J. Algebra Appl. 16 (2017), Article ID 1750128, 14 pages. DOI 10.1142/S0219498817501286 | MR 3660411 | Zbl 1368.13006
[3] Breaz, S., Călugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. DOI 10.1016/j.laa.2013.08.027 | MR 3116417 | Zbl 1355.16023
[4] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). DOI 10.1142/8006 | MR 2752904 | Zbl 1245.16002
[5] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings. J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. DOI 10.1142/S021949881750178X | MR 3661645 | Zbl 1382.16035
[6] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. DOI 10.1016/j.jalgebra.2013.02.020 | MR 3037975 | Zbl 1296.16016
[7] Han, J., Nicholson, W. K.: Extensions of clean rings. Commun. Algebra 29 (2001), 2589-2595. DOI 10.1081/AGB-100002409 | MR 1845131 | Zbl 0989.16015
[8] Hirano, Y., Tominaga, H.: Rings in which every element is a sum of two idempotents. Bull. Aust. Math. Soc. 37 (1988), 161-164. DOI 10.1017/S000497270002668X | MR 0930784 | Zbl 0688.16015
[9] Hirano, Y., Tominaga, H., Yaqub, A.: On rings in which every element is uniquely expressible as a sum of a nilpotent element and a certain potent element. Math. J. Okayama Univ. 30 (1988), 33-40. DOI 10.18926/mjou/33546 | MR 0976729 | Zbl 0665.16016
[10] Koşan, M. T., Lee, T.-K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. DOI 10.1016/j.laa.2014.02.047 | MR 3192466 | Zbl 1303.15016
[11] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings. J. Pure Appl. Algebra 220 (2016), 633-646. DOI 10.1016/j.jpaa.2015.07.009 | MR 3399382 | Zbl 1335.16026
[12] Tominaga, H., Yaqub, A.: On generalized $n$-like rings and related rings. Math. J. Okayama Univ. 23 (1981), 199-202. MR 0638143 | Zbl 0477.16018
[13] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents. Can. Math. Bull. 59 (2016), 661-672. DOI 10.4153/CMB-2016-009-0 | MR 3563747 | Zbl 1373.16067
[14] Yu, H.-P.: On quasi-duo rings. Glasg. Math. J. 37 (1995), 21-31. DOI 10.1017/S0017089500030342 | MR 1316960 | Zbl 0819.16001
Partner of
EuDML logo