Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
companion matrix; Fiedler companion matrix; condition number; generalized companion matrix
Summary:
The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition number than any Fiedler companion matrix. We finish by exploring the condition number of a class of matrices obtained from perturbing a Frobenius companion matrix while preserving the characteristic polynomial.\looseness -1
References:
[1] Cox, M.: On Conditions Numbers of Companion Matrices: M.Sc. Thesis. McMaster University, Hamilton (2018).
[2] Deaett, L., Fischer, J., Garnett, C., Meulen, K. N. Vander: Non-sparse companion matrices. Electron. J. Linear Algebra 35 (2019), 223-247. DOI 10.13001/1081-3810.3839 | MR 3982283 | Zbl 1419.15030
[3] Terán, F. de, Dopico, F. M., Pérez, J.: Condition numbers for inversion of Fiedler companion matrices. Linear Algebra Appl. 439 (2013), 944-981. DOI 10.1016/j.laa.2012.09.020 | MR 3061748 | Zbl 1281.15004
[4] Eastman, B., Kim, I.-J., Shader, B. L., Meulen, K. N. Vander: Companion matrix patterns. Linear Algebra Appl. 463 (2014), 255-272. DOI 10.1016/j.laa.2014.09.010 | MR 3262399 | Zbl 1310.15015
[5] Fiedler, M.: A note on companion matrices. Linear Algebra Appl. 372 (2003), 325-331. DOI 10.1016/S0024-3795(03)00548-2 | MR 1999154 | Zbl 1031.15014
[6] Garnett, C., Shader, B. L., Shader, C. L., Driessche, P. van den: Characterization of a family of generalized companion matrices. Linear Algebra Appl. 498 (2016), 360-365. DOI 10.1016/j.laa.2015.07.031 | MR 3478567 | Zbl 1371.15019
[7] Meulen, K. N. Vander, Vanderwoerd, T.: Bounds on polynomial roots using intercyclic companion matrices. Linear Algebra Appl. 539 (2018), 94-116. DOI 10.1016/j.laa.2017.11.002 | MR 3739399 | Zbl 1380.15011
Partner of
EuDML logo