Previous |  Up |  Next

Article

Title: Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media (English)
Author: Altunkaynak, Meltem
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 3
Year: 2024
Pages: 289-309
Summary lang: English
.
Category: math
.
Summary: Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse Fourier transform. A numerical example is considered for the comparison of the exact solution with the computed solution obtained by using the method. (English)
Keyword: 2D quasicrystals
Keyword: inhomogeneous media
Keyword: elastodynamic system
MSC: 35L52
MSC: 35Q86
DOI: 10.21136/AM.2024.0045-23
.
Date available: 2024-05-17T07:45:39Z
Last updated: 2024-05-20
Stable URL: http://hdl.handle.net/10338.dmlcz/152350
.
Reference: [1] Altunkaynak, M.: An analytical method for solving elastic system in inhomogeneous orthotropic media.Math. Methods Appl. Sci. 42 (2019), 2324-2333. Zbl 1420.35154, MR 3936402, 10.1002/mma.5510
Reference: [2] Andersen, N. B.: Real Paley-Wiener theorems for the inverse Fourier transform on a Riemannian symmetric space.Pac. J. Math. 213 (2004), 1-13. Zbl 1049.43004, MR 2040247, 10.2140/pjm.2004.213.1
Reference: [3] Chen, J., Liu, Z., Zou, Z.: Transient internal crack problem for a nonhomogeneous orthotropic strip (Mode I).Int. J. Eng. Sci. 40 (2002), 1761-1774. 10.1016/S0020-7225(02)00038-1
Reference: [4] Chen, W. Q., Ma, Y. L., Ding, H. J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies.Mech. Res. Commun. 31 (2004), 633-641. Zbl 1098.74554, MR 2092970, 10.1016/j.mechrescom.2004.03.007
Reference: [5] Daros, C. H.: A fundamental solution for SH-waves in a class of inhomogeneous anisotropic media.Int. J. Eng. Sci. 46 (2008), 809-817. Zbl 1213.74156, MR 2427933, 10.1016/j.ijengsci.2008.02.001
Reference: [6] Daros, C. H.: A time-harmonic fundamental solution for a class of inhomogeneous transversely isotropic media.Wave Motion 46 (2009), 269-279. Zbl 1231.74172, MR 2568578, 10.1016/j.wavemoti.2009.02.001
Reference: [7] De, P., Pelcovits, R. A.: Linear elasticity theory of pentagonal quasicrystals.Phys. Rev. B 35 (1987), Article ID 8609, 12 pages. 10.1103/PhysRevB.35.8609
Reference: [8] Ding, D.-H., Wang, R., Yang, W., Hu, C.: General expressions for the elastic displacement fields induced by dislocations in quasicrystals.J. Phys., Conden. Matt. 7 (1995), Article ID 5423, 14 pages. 10.1088/0953-8984/7/28/003
Reference: [9] Ding, D.-H., Yang, W., Hu, C., Wang, R.: Generalized elasticity theory of quasicrystals.Phys. Rev. B 48 (1993), Article ID 7003, 8 pages. 10.1103/PhysRevB.48.7003
Reference: [10] Ding, H., Chenbuo, Liangjian: General solutions for coupled equations for piezoelectric media.Int. J. Solids Struct. 33 (1996), 2283-2298. Zbl 0899.73453, 10.1016/0020-7683(95)00152-2
Reference: [11] Fan, T.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications.Springer, Berlin (2011). Zbl 1222.74003, MR 2847904, 10.1007/978-3-642-14643-5
Reference: [12] Fan, T.-Y., Mai, Y.-W.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials.Appl. Mech. Rev. 57 (2004), 325-343. 10.1115/1.1763591
Reference: [13] Gao, Y.: Governing equations and general solutions of plane elasticity of cubic quasicrystals.Phys. Lett., A 373 (2009), 885-889. Zbl 1236.74048, 10.1016/j.physleta.2009.01.002
Reference: [14] Gao, Y., Xu, S.-P., Zhao, B.-S.: A theory of general solutions of 3D problems in 1D hexagonal quasicrystals.Phys. Scr. 77 (2008), Article ID 015601, 6 pages. Zbl 1157.82395, 10.1088/0031-8949/77/01/015601
Reference: [15] Gao, Y., Zhao, B.-S.: A general treatment of three-dimensional elasticity of quasicrystals by an operator method.Phys. Status Solid., B 243 (2006), 4007-4019. 10.1002/pssb.200541400
Reference: [16] Gao, Y., Zhao, B.-S.: General solutions of three-dimensional problems for two-dimensional quasicrystals.Appl. Math. Modelling 33 (2009), 3382-3391. Zbl 1205.74023, MR 2524125, 10.1016/j.apm.2008.11.001
Reference: [17] Holford, R. L.: Elementary source-type solutions of the reduced wave equation.J. Acoust. Soc. Am. 70 (1981), 1427-1436. Zbl 0478.35030, MR 0634323, 10.1121/1.387099
Reference: [18] Hook, J. F.: Green's functions for axially symmetric elastic waves in unbounded inhomogeneous media having constant velocity gradients.J. Appl. Mech. 29 (1962), 293-298. Zbl 0107.41902, MR 0138265, 10.1115/1.3640544
Reference: [19] Hu, C., Wang, R., Ding, D.-H.: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals.Rep. Progr. Phys. 63 (2000), Article ID 63, 39 pages. MR 1732137, 10.1088/0034-4885/63/1/201
Reference: [20] Levine, D., Steinhardt, P. J.: Quasicrystals: A new class of ordered structures.Phys. Rev. Lett. 53 (1984), Article ID 2477, 4 pages. MR 0831879, 10.1103/PhysRevLett.53.2477
Reference: [21] Li, L.-H., Fan, T.-Y.: Final governing equation of plane elasticity of icosahedral quasicrystals and general solution based on stress potential function.Chin. Phys. Lett. 23 (2006), Article ID 2519, 3 pages. 10.1088/0256-307X/23/9/047
Reference: [22] Liu, G. T., Fan, T. Y., Guo, R. P.: Governing equations and general solutions of plane elasticity of one-dimensional quasicrystals.Int. J. Solids Struct. 41 (2004), 3949-3959. Zbl 1079.74524, MR 2215812, 10.1016/j.ijsolstr.2004.02.028
Reference: [23] Manolis, G. D., Shaw, R. P.: Fundamental solutions for variable density two-dimensional elastodynamic problems.Eng. Anal. Bound. Elem. 24 (2000), 739-750. Zbl 0971.74046, 10.1016/S0955-7997(00)00056-4
Reference: [24] Ovid'ko, I. A.: Plastic deformation and decay of dislocations in quasi-crystals.Mater. Sci. Eng., A 154 (1992), 29-33. 10.1016/0921-5093(92)90359-9
Reference: [25] Peng, Y.-Z., Fan, T.-Y: Perturbation theory of 2D decagonal quasicrystals.Physica B 311 (2002), 326-330. 10.1016/S0921-4526(01)00611-1
Reference: [26] Rangelov, T. V., Manolis, G. D., Dineva, P. S.: Elastodynamic fundamental solutions for certain families of 2D inhomogeneous anisotropic domains: Basic derivations.Eur. J. Mech., A, Solids 24 (2005), 820-836 \99999DOI99999 10.1016/j.euromechsol.2005.05.002 . Zbl 1125.74344, MR 2174322, 10.1016/j.euromechsol.2005.05.002
Reference: [27] Rochal, S. B., Lebedyuk, I. V., Kozinkina, Y. A.: Linear continuous inhomogeneous strains in octagonal and decagonal quasicrystals.Phys. Rev., B 60 (1999), Article ID 865, 9 pages. 10.1103/PhysRevB.60.865
Reference: [28] Shechtman, D., Blech, I., Gratias, D., Cahn, J. W.: Metallic phase with long-range orientational order and no translational symmetry.Phys. Rev. Lett. 53 (1984), Article ID 1951, 3 pages. 10.1103/PhysRevLett.53.1951
Reference: [29] Slawinski, M. A.: Waves and Rays in Elastic Continua.World Scientific, Hackensack (2021). Zbl 1459.74002, 10.1142/11994
Reference: [30] Socolar, J. E. S., Lubensky, T. C., Steinhardt, P. J.: Phonons, phasons, and dislocations in quasicrystals.Phys. Rev., B 34 (1986), Article ID 3345, 16 pages. 10.1103/PhysRevB.34.3345
Reference: [31] Wang, X.: The general solution of one-dimensional hexagonal quasicrystal.Mech. Res. Commun. 33 (2006), 576-580. Zbl 1192.74069, MR 2215812, 10.1016/j.mechrescom.2005.02.022
Reference: [32] Watanabe, K.: Transient response of an inhomogeneous elastic solid to an impulsive SH-source: Variable SH-wave velocity.Bull. JSME 25 (1982), 315-320. 10.1299/jsme1958.25.315
Reference: [33] Watanabe, K., Payton, R. G.: Green's function and its non-wave nature for SH-wave in inhomogeneous elastic solid.Int. J. Eng. Sci. 42 (2004), 2087-2106. Zbl 1211.74123, MR 2102742, 10.1016/j.ijengsci.2004.08.001
Reference: [34] Yakhno, V.: A new method of solving equations of elasticity in inhomogeneous quasicrystals by means of symmetric hyperbolic systems.Math. Methods Appl. Sci. 44 (2021), 9487-9506. Zbl 1475.35338, MR 4279862, 10.1002/mma.7373
Reference: [35] Yakhno, V. G., Sevimlican, A.: Solving an initial value problem in inhomogeneous electrically and magnetically anisotropic uniaxial media.Appl. Math. Comput. 215 (2010), 3839-3850. Zbl 1188.78003, MR 2578849, 10.1016/j.amc.2009.11.027
Reference: [36] Yakhno, V., Sevimlican, A.: An analytic method for the initial value problem of the electric field system in vertical inhomogeneous anisotropic media.Appl. Math., Praha 56 (2011), 315-339. Zbl 1224.35392, MR 2800581, 10.1007/s10492-011-0019-y
Reference: [37] Yakhno, V. G., Yaslan, H. Ç: Three dimensional elastodynamics of 2D quasicrystals: The derivation of the time-dependent fundamental solution.Appl. Math. Modelling 35 (2011), 3092-3110. Zbl 1219.74010, MR 2776264, 10.1016/j.apm.2010.12.019
Reference: [38] Yang, L. Z., Zhang, L. L., Gao, Y.: General solutions of plane problem in one-dimensional hexagonal quasicrystals.Appl. Mech. Mater. 275-277 (2013), 101-104. 10.4028/www.scientific.net/AMM.275-277.101
Reference: [39] Zhang, L., Zhang, Y., Gao, Y.: General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect.Phys. Lett., A 378 (2014), 2768-2776. Zbl 1298.74027, MR 3250390, 10.1016/j.physleta.2014.07.027
Reference: [40] Zhou, W.-M., Fan, T.-Y.: Axisymmetric elasticity problem of cubic quasicrystal.Chin. Phys. 9 (2000), Article ID 294, 10 pages. 10.1088/1009-1963/9/4/009
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo