[11] Hinton, D., (Eds.), P. W. Schaefer: 
Spectral Theory & Computational Methods of Sturm-Liouville Problems. Lecture Notes in Pure and Applied Mathematics 191. Marcel Dekker, New York (1997). 
MR 1460546 | 
Zbl 0866.00046[14] Liu, C.-S.: 
Analytic solutions of the eigenvalues of Mathieu's equation. J. Math. Research 12 (2020), Article ID p1, 11 pages. 
DOI 10.5539/jmr.v12n1p1[15] Liu, C.-S.: 
Accurate eigenvalues for the Sturm-Liouville problems, involving generalized and periodic ones. J. Math. Res. 14 (2022), Article ID p1, 19 pages. 
DOI 10.5539/jmr.v14n4p1[16] Liu, C.-S., Atluri, S. N.: 
A novel fictitious time integration method for solving the discretized inverse Sturm-Liouville problems, for specified eigenvalues. CMES, Comput. Model. Eng. Sci. 36 (2008), 261-285. 
DOI 10.3970/cmes.2008.036.261 | 
MR 2489473 | 
Zbl 1232.74007[17] Liu, C.-S., Atluri, S. N.: 
A novel time integration method for solving a large system of non-linear algebraic equations. CMES, Comput. Model. Eng. Sci. 31 (2008), 71-83. 
MR 2450570 | 
Zbl 1152.65428[18] Liu, C.-S., Chang, J.-R., Shen, J.-H., Chen, Y.-W.: 
A boundary shape function method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems. Mathematics 10 (2022), Article ID 3689, 22 pages. 
DOI 10.3390/math10193689[19] Liu, C.-S., Li, B.: 
An upper bound theory to approximate the natural frequencies and parameters identification of composite beams. Composite Struct. 171 (2017), 131-144. 
DOI 10.1016/j.compstruct.2017.03.014[21] Liu, C.-S., Li, B.-T.: 
An $R(x)$-orthonormal theory for the vibration performance of non-smooth symmetric composite beam with complex interface. Acta Mech. Sin. 35 (2019), 228-241. 
DOI 10.1007/s10409-018-0799-3 | 
MR 3908891