Keywords: asymptotical formula; exponential sum; exponential pair; integral part
Summary: Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
[4] Graham, S. W., Kolesnik, G.: Van der Corput's Method for Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). DOI 10.1017/CBO9780511661976 | MR 1145488 | Zbl 0713.11001
[8] Mercier, A., Nowak, W. G.: On the asymptotic behaviour of sums $\sum g\left(n\right)\{x/n\}^k$. Monatsh. Math. 99 (1985), 213-221. DOI 10.1007/BF01295155 | MR 0791682 | Zbl 0555.10027