Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
asymptotical formula; exponential sum; exponential pair; integral part
Summary:
Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
References:
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). DOI 10.1007/978-1-4757-5579-4 | MR 0434929 | Zbl 0335.10001
[2] Bordellès, O.: Arithmetic Tales. Universitext. Springer, London (2012). DOI 10.1007/978-1-4471-4096-2 | MR 2952910 | Zbl 1244.11001
[3] Bordellès, O., Dai, L., Heyman, R., Pan, H., Shparlinski, I. E.: On a sum involving the Euler function. J. Number Theory 202 (2019), 278-297. DOI 10.1016/j.jnt.2019.01.006 | MR 3958074 | Zbl 1454.11009
[4] Graham, S. W., Kolesnik, G.: Van der Corput's Method for Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). DOI 10.1017/CBO9780511661976 | MR 1145488 | Zbl 0713.11001
[5] Liu, K., Wu, J., Yang, Z.: A variant of the prime number theorem. Indag. Math., New Ser. 33 (2022), 388-396. DOI 10.1016/j.indag.2021.09.005 | MR 4383117 | Zbl 1487.11087
[6] Ma, J., Sun, H.: On a sum involving the divisor function. Period. Math. Hung. 83 (2021), 185-191. DOI 10.1007/s10998-020-00378-3 | MR 4344126 | Zbl 1499.11293
[7] Ma, J., Wu, J.: On a sum involving the Mangoldt function. Period. Math. Hung. 83 (2021), 39-48. DOI 10.1007/s10998-020-00359-6 | MR 4260147 | Zbl 1488.11151
[8] Mercier, A., Nowak, W. G.: On the asymptotic behaviour of sums $\sum g\left(n\right)\{x/n\}^k$. Monatsh. Math. 99 (1985), 213-221. DOI 10.1007/BF01295155 | MR 0791682 | Zbl 0555.10027
[9] Stucky, J.: The fractional sum of small arithmetic functions. J. Number Theory 238 (2022), 731-739. DOI 10.1016/j.jnt.2021.09.015 | MR 4430115 | Zbl 1508.11082
[10] Wu, J.: Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski. Period. Math. Hung. 80 (2020), 95-102. DOI 10.1007/s10998-019-00300-6 | MR 4059866 | Zbl 1449.11011
[11] Zhai, W.: On a sum involving the Euler function. J. Number Theory 211 (2020), 199-219. DOI 10.1016/j.jnt.2019.10.003 | MR 4074554 | Zbl 1437.11119
Partner of
EuDML logo