Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Lipschitz constant; hyperbolic type metric; Möbius transformation
Summary:
Let $D$ be a nonempty open set in a metric space $(X,d)$ with $\partial D\neq \emptyset $. Define $$ h_{D,c}(x,y)=\log \bigg (1+c\frac {d(x,y)}{\sqrt {d_D(x)d_D(y)}}\bigg ), $$ where $d_D(x)=d(x,\partial D)$ is the distance from $x$ to the boundary of $D$. For every $c\geq 2$, $h_{D,c}$ is a metric. We study the sharp Lipschitz constants for the metric $h_{D,c}$ under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.
References:
[1] Ahlfors, L. V.: Conformal Invariants: Topics in Geometric Function Theory. AMS Chelsea Publishing, Providence (2010). DOI 10.1090/chel/371 | MR 2730573 | Zbl 1211.30002
[2] Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Chichester (1997). MR 1462077 | Zbl 0885.30012
[3] Beardon, A. F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics 91. Springer, New York (1983). DOI 10.1007/978-1-4612-1146-4 | MR 0698777 | Zbl 0528.30001
[4] Beardon, A. F., Minda, D.: The hyperbolic metric and geometric function theory. Proceedings of the International Workshop on Quasiconformal Mappings and Their Applications Narosa Publishing House, New Delhi (2007), 9-56. MR 2492498 | Zbl 1208.30001
[5] Chen, J., Hariri, P., Klén, R., Vuorinen, M.: Lipschitz conditions, triangular ratio metric, and quasiconformal mappings. Ann. Acad. Sci. Fenn., Math. 40 (2015), 683-709. DOI 10.5186/aasfm.2015.4039 | MR 3409699 | Zbl 1374.30069
[6] Dovgoshey, O., Hariri, P., Vuorinen, M.: Comparison theorems for hyperbolic type metrics. Complex Var. Elliptic Equ. 61 (2016), 1464-1480. DOI 10.1080/17476933.2016.1182517 | MR 3513361 | Zbl 1354.54026
[7] Gehring, F. W., Hag, K.: The Apollonian metric and quasiconformal mappings. Proceedings of the First Ahlfors-Bers Colloquium, State University of New York, Stony Brook, NY, USA, November 6-8, 1998 Contemporary Mathematics 256. AMS, Providence (2000), (143-163). DOI 10.1090/conm/256 | MR 1759676 | Zbl 0964.30024
[8] Gehring, F. W., Hag, K.: The Ubiquitous Quasidisk. Mathematical Surveys and Monographs 184. AMS, Providence (2012). DOI 10.1090/surv/184 | MR 2933660 | Zbl 1267.30003
[9] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasi-hyperbolic metric. J. Anal. Math. 36 (1979), 50-74. DOI 10.1007/BF02798768 | MR 0581801 | Zbl 0449.30012
[10] Gehring, F. W., Palka, B. P.: Quasiconformally homogeneous domains. J. Anal. Math. 30 (1976), 172-199. DOI 10.1007/BF02786713 | MR 0437753 | Zbl 0349.30019
[11] Hariri, P., Klén, R., Vuorinen, M.: Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monographs in Mathematics. Springer, Cham (2020). DOI 10.1007/978-3-030-32068-3 | MR 4179585 | Zbl 1450.30003
[12] Hariri, P., Vuorinen, M., Wang, G.: Some remarks on the visual angle metric. Comput. Methods Funct. Theory 16 (2016), 187-201. DOI 10.1007/s40315-015-0137-8 | MR 3503350 | Zbl 1355.30019
[13] Hariri, P., Vuorinen, M., Zhang, X.: Inequalities and bi-Lipschitz conditions for the triangular ratio metric. Rocky Mt. J. Math. 47 (2017), 1121-1148. DOI 10.1216/RMJ-2017-47-4-1121 | MR 3689948 | Zbl 1376.30019
[14] Hästö, P. A.: A new weighted metric: The relative metric. I. J. Math. Anal. Appl. 274 (2002), 38-58. DOI 10.1016/S0022-247X(02)00219-6 | MR 1936685 | Zbl 1019.54011
[15] Ibragimov, Z., Mohapatra, M. R., Sahoo, S. K., Zhang, X.: Geometry of the Cassinian metric and its inner metric. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 361-372. DOI 10.1007/s40840-015-0246-6 | MR 3592912 | Zbl 1366.30007
[16] Jia, G., Wang, G., Zhang, X.: Geometric properties of the triangular ratio metric and related metrics. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 4223-4237. DOI 10.1007/s40840-021-01163-2 | MR 4321759 | Zbl 1476.30149
[17] Klén, R., Lindén, H., Vuorinen, M., Wang, G.: The visual angle metric and Möbius transformations. Comput. Methods Funct. Theory 14 (2014), 577-608. DOI 10.1007/s40315-014-0075-x | MR 3265380 | Zbl 1307.30082
[18] Klén, R., Mohapatra, M. R., Sahoo, S. K.: Geometric properties of the Cassinian metric. Math. Nachr. 290 (2017), 1531-1543. DOI 10.1002/mana.201600117 | MR 3672894 | Zbl 1392.30005
[19] Mocanu, M.: Functional inequalities for metric-preserving functions with respect to intrinsic metrics of hyperbolic type. Symmetry 13 (2021), Article ID 2072, 21 pages. DOI 10.3390/sym13112072
[20] Mohapatra, M. R., Sahoo, S. K.: A Gromov hyperbolic metric vs the hyperbolic and other related metrics. Comput. Methods Funct. Theory 18 (2018), 473-493. DOI 10.1007/s40315-018-0233-7 | MR 3844664 | Zbl 1402.30039
[21] Nikolov, N., Andreev, L.: Estimates of the Kobayashi and quasi-hyperbolic distances. Ann. Mat. Pura Appl. (4) 196 (2017), 43-50. DOI 10.1007/s10231-016-0561-z | MR 3600857 | Zbl 1366.32006
[22] Ratcliffe, J. G.: Foundations of Hyperbolic Manifolds. Graduate Texts in Mathematics 149. Springer, New York (2006). DOI 10.1007/978-0-387-47322-2 | MR 2249478 | Zbl 1106.51009
[23] Simić, S., Vuorinen, M., Wang, G.: Sharp Lipschitz constants for the distance ratio metric. Math. Scand. 116 (2015), 86-103. DOI 10.7146/math.scand.a-20452 | MR 3322608 | Zbl 1311.30004
[24] Vuorinen, M.: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Mathematics 1319. Springer, Berlin (1988). DOI 10.1007/BFb0077904 | MR 0950174 | Zbl 0646.30025
[25] Wang, G., Xu, X., Vuorinen, M.: Remarks on the scale-invariant Cassinian metric. Bull. Malays. Math. Sci. Soc. (2) 44 (2021), 1559-1577. DOI 10.1007/s40840-020-01011-9 | MR 4241324 | Zbl 1462.30085
[26] Xu, X., Wang, G., Zhang, X.: Comparison and Möbius quasi-invariance properties of Ibragimov's metric. Comput. Methods Funct. Theory 22 (2022), 609-627. DOI 10.1007/s40315-021-00414-4 | MR 4473943 | Zbl 1502.30130
Partner of
EuDML logo