Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
bilinear fractional Hardy operator; rough kernel; central Morrey space; variable exponent
Summary:
We introduce a type of $n$-dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.
References:
[1] Alvarez, J., Lakey, J., Guzmán-Partida, M.: Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures. Collect. Math. 51 (2000), 1-47. MR 1757848 | Zbl 0948.42013
[2] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. DOI 10.4171/RMI/511 | MR 2414490 | Zbl 1213.42063
[3] Christ, M., Grafakos, L.: Best constants for two nonconvolution inequalities. Proc. Am. Math. Soc. 123 (1995), 1687-1693. DOI 10.1090/S0002-9939-1995-1239796-6 | MR 1239796 | Zbl 0830.42009
[4] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn., Math. 28 (2003), 223-238. MR 1976842 | Zbl 1037.42023
[5] Cruz-Uribe, D., Wang, D.: Variable Hardy spaces. Indiana Univ. Math. J. 63 (2014), 447-493. DOI 10.1512/iumj.2014.63.5232 | MR 3233216 | Zbl 1311.42053
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[7] Fu, Z. W., Gong, S. L., Lu, S. Z., Yuan, W.: Weighted multilinear Hardy operators and commutators. Forum Math. 27 (2015), 2825-2851. DOI 10.1515/forum-2013-0064 | MR 3393380 | Zbl 1331.42016
[8] Fu, Z., Lin, Y.: $\lambda$-central BMO estimates for commutators of higher dimensional fractional Hardy operators. Acta Math. Sin., Chin. Ser. 53 (2010), 925-932 Chinese. DOI 10.12386/A2010sxxb0103 | MR 2722928 | Zbl 1240.42040
[9] Fu, Z., Liu, Z., Lu, S., Wang, H.: Characterization for commutators of $n$-dimensional fractional Hardy operators. Sci. China, Ser. A 50 (2007), 1418-1426. DOI 10.1007/s11425-007-0094-4 | MR 2390459 | Zbl 1131.42012
[10] Fu, Z., Lu, S., Shi, S.: Two characterizations of central BMO space via the commutators of Hardy operators. Forum Math. 33 (2021), 505-529. DOI 10.1515/forum-2020-0243 | MR 4223073 | Zbl 1491.42035
[11] Fu, Z., Lu, S., Wang, H., Wang, L.: Singular integral operators with rough kernels on central Morrey spaces with variable exponent. Ann. Acad. Sci. Fenn., Math. 44 (2019), 505-522. DOI 10.5186/aasfm.2019.4431 | MR 3919152 | Zbl 1412.42059
[12] Fu, Z., Lu, S., Zhao, F.: Commutators of $n$-dimensional rough Hardy operators. Sci. China, Math. 54 (2011), 95-104. DOI 10.1007/s11425-010-4110-8 | MR 2764788 | Zbl 1226.47050
[13] Hardy, G. H.: Note on a theorem of Hilbert. Math. Z. 6 (1920), 314-317 \99999JFM99999 47.0207.01. DOI 10.1007/BF01199965 | MR 1544414
[14] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. DOI 10.1016/j.na.2010.02.033 | MR 2639204 | Zbl 1188.35072
[15] Ho, K.-P.: Hardy's inequality on Hardy-Morrey spaces with variable exponents. Mediterr. J. Math. 14 (2017), Article ID 79, 19 pages. DOI 10.1007/s00009-016-0811-8 | MR 3620157 | Zbl 1367.26034
[16] Hussain, A., Asim, M., Jarad, F.: Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators. J. Math. 2022 (2022), Article ID 5855068, 12 pages. DOI 10.1155/2022/5855068 | MR 4425886
[17] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36 (2010), 33-50. DOI 10.1007/s10476-010-0102-8 | MR 2606575 | Zbl 1224.42025
[18] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. DOI 10.21136/CMJ.1991.102493 | MR 1134951 | Zbl 0784.46029
[19] Mizuta, Y., Nekvinda, A., Shimomura, T.: Optimal estimates for the fractional Hardy operator. Stud. Math. 227 (2015), 1-19. DOI 10.4064/sm227-1-1 | MR 3359954 | Zbl 1328.47049
[20] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent. Hokkaido Math. J. 44 (2015), 185-201. DOI 10.14492/hokmj/1470053290 | MR 3532106 | Zbl 1334.31004
[21] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262 (2012), 3665-3748. DOI 10.1016/j.jfa.2012.01.004 | MR 2899976 | Zbl 1244.42012
[22] Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3 (1931), 200-212 German. DOI 10.4064/sm-3-1-200-211 | Zbl 0003.25203
[23] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748. Springer, Berlin (2000). DOI 10.1007/BFb0104029 | MR 1810360 | Zbl 0962.76001
[24] Shi, S., Fu, Z., Lu, S.: On the compactness of commutators of Hardy operators. Pac. J. Math. 307 (2020), 239-256. DOI 10.2140/pjm.2020.307.239 | MR 4131808 | Zbl 1445.42015
[25] Shi, S., Lu, S.: Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl. 429 (2015), 713-732. DOI 10.1016/j.jmaa.2015.03.083 | MR 3342488 | Zbl 1317.42022
[26] Tan, J., Liu, Z.: Some boundedness of homogeneous fractional integrals on variable exponent function spaces. Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. DOI 10.12386/A2015sxxb0030 | MR 3408398 | Zbl 1340.42055
[27] Tan, J., Liu, Z., Zhao, J.: On some multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11 (2017), 715-734. DOI 10.7153/jmi-2017-11-57 | MR 3732810 | Zbl 1375.42033
[28] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. Pure and Applied Mathematics 123. Academic Press, New York (1986). MR 0869816 | Zbl 0621.42001
[29] Wang, H.: Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czech. Math. J. 66 (2016), 251-269. DOI 10.1007/s10587-016-0254-1 | MR 3483237 | Zbl 1413.42029
[30] Wang, H.: The continuity of commutators on Herz-type Hardy spaces with variable exponent. Kyoto J. Math. 56 (2016), 559-573. DOI 10.1215/21562261-3600175 | MR 3542775 | Zbl 1348.42014
[31] Wang, H.: Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent. J. Korean Math. Soc. 54 (2017), 713-732. DOI 10.4134/JKMS.j150771 | MR 3640903 | Zbl 1366.42018
[32] Wang, H., Fu, Z.: Estimates of commutators on Herz-type spaces with variable exponent and applications. Banach J. Math. Anal. 15 (2021), Article ID 36, 27 pages. DOI 10.1007/s43037-021-00120-2 | MR 4216372 | Zbl 1470.42027
[33] Wang, H., Liao, F.: Boundedness of singular integral operators on Herz-Morrey spaces with variable exponent. Chin. Ann. Math., Ser. B 41 (2020), 99-116. DOI 10.1007/s11401-019-0188-7 | MR 4036493 | Zbl 1431.42031
[34] Wang, H., Liu, Z.: Boundedness of singular integral operators on weak Herz type spaces with variable exponent. Ann. Funct. Anal. 11 (2020), 1108-1125. DOI 10.1007/s43034-020-00075-9 | MR 4133617 | Zbl 1446.42036
[35] Wang, H., Xu, J.: Multilinear fractional integral operators on central Morrey spaces with variable exponent. J. Inequal. Appl. 2019 (2019), Article ID 311, 23 pages. DOI 10.1186/s13660-019-2264-7 | MR 4062057 | Zbl 1499.42116
[36] Wang, H., Xu, J., Tan, J.: Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents. Front. Math. China 15 (2020), 1011-1034. DOI 10.1007/s11464-020-0864-7 | MR 4173409 | Zbl 1472.42024
[37] Wang, L.: Multilinear Calderón-Zygmund operators and their commutators on central Morrey spaces with variable exponent. Bull. Korean Math. Soc. 57 (2020), 1427-1449. DOI 10.4134/BKMS.b191108 | MR 4180187 | Zbl 1462.42026
[38] Wu, Q. Y., Fu, Z. W.: Weighted $p$-adic Hardy operators and their commutators on $p$-adic central Morrey spaces. Bull. Malays. Math. Sci. Soc. (2) 40 (2017), 635-654. DOI 10.1007/s40840-017-0444-5 | MR 3620272 | Zbl 1407.42009
[39] Xu, J.: Variable Besov and Triebel-Lizorkin spaces. Ann. Acad. Sci. Fenn., Math. 33 (2008), 511-522. MR 2431378 | Zbl 1160.46025
[40] Yang, D., Yuan, W., Zhuo, C.: Triebel-Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9 (2015), 146-202. DOI 10.15352/bjma/09-4-9 | MR 3336888 | Zbl 1339.46040
[41] Yang, D., Zhuo, C., Yuan, W.: Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269 (2015), 1840-1898. DOI 10.1016/j.jfa.2015.05.016 | MR 3373435 | Zbl 1342.46038
[42] Zhao, F., Fu, Z., Lu, S.: $M_p$ weights for bilinear Hardy operators on $\Bbb{R}^n$. Collect. Math. 65 (2014), 87-102. DOI 10.1007/s13348-013-0083-6 | MR 3147771 | Zbl 1305.26042
Partner of
EuDML logo