Title:
|
A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions (English) |
Author:
|
Schwab, Emil Daniel |
Author:
|
Schwab, Gabriela |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
2 |
Year:
|
2024 |
Pages:
|
237-246 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly. (English) |
Keyword:
|
Fibonacci sequence |
Keyword:
|
multiplicative arithmetic function |
Keyword:
|
Binet's formula |
Keyword:
|
Busche-Ramanujan identities |
Keyword:
|
Möbius inversion |
MSC:
|
11A25 |
MSC:
|
11B39 |
DOI:
|
10.21136/MB.2023.0102-22 |
. |
Date available:
|
2024-07-10T15:05:10Z |
Last updated:
|
2024-07-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152470 |
. |
Reference:
|
[1] Apostol, T. M.: Möbius functions of order $k$.Pac. J. Math. 32 (1970), 21-27. Zbl 0188.34101, MR 0253999, 10.2140/pjm.1970.32.21 |
Reference:
|
[2] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics. Springer, New York (1976). Zbl 0335.10001, MR 0434929, 10.1007/978-1-4757-5579-4 |
Reference:
|
[3] Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S.: On a certain kind of generalized number-theoretical Möbius function.Math. Sci. 25 (2000), 72-77. Zbl 0965.11002, MR 1807073 |
Reference:
|
[4] Catarino, P.: On some identities and generating functions for $k$-Pell numbers.Int. J. Math. Anal., Ruse 7 (2013), 1877-1884. Zbl 1285.11024, MR 3084999, 10.12988/ijma.2013.35131 |
Reference:
|
[5] Cohen, E.: Arithmetical notes. X: A class of totients.Proc. Am. Math. Soc. 15 (1964), 534-539. Zbl 0124.02704, MR 0166146, 10.1090/S0002-9939-1964-0166146-9 |
Reference:
|
[6] Falcón, S., Plaza, Á.: The $k$-Fibonacci sequence and the Pascal 2-triangle.Chaos Solitons Fractals 33 (2007), 38-49. Zbl 1152.11308, MR 2301846, 10.1016/j.chaos.2006.10.022 |
Reference:
|
[7] Haukkanen, P.: A note on specially multiplicative arithmetic functions.Fibonacci Q. 26 (1988), 325-327. Zbl 0662.10003, MR 0967651 |
Reference:
|
[8] Horadam, A. F.: Basic properties of a certain generalized sequence of numbers.Fibonacci Q. 3 (1965), 161-176. Zbl 0131.04103, MR 0186615 |
Reference:
|
[9] Horadam, A. F.: Generating functions for powers of certain generalized sequences of numbers.Duke Math. J. 32 (1965), 437-446. Zbl 0131.04104, MR 0177975, 10.1215/S0012-7094-65-03244-8 |
Reference:
|
[10] Hsu, L. C.: A difference-operational approach to the Möbius inversion formulas.Fibonacci Q. 33 (1995), 169-173. Zbl 0822.11005, MR 1329025 |
Reference:
|
[11] Jhala, D., Sisodiya, K., Rathore, G. P. S.: On some identities for $k$-Jacobsthal numbers.Int. J. Math. Anal., Ruse 7 (2013), 551-556. Zbl 1283.11028, MR 3004318, 10.12988/ijma.2013.13052 |
Reference:
|
[12] Kalman, D., Mena, R.: The Fibonacci numbers---exposed.Math. Mag. 76 (2003), 167-181. Zbl 1048.11014, MR 2083847, 10.2307/3219318 |
Reference:
|
[13] McCarthy, P. J.: Introduction to Arithmetical Functions.Universitext. Springer, New York (1986). Zbl 0591.10003, MR 0815514, 10.1007/978-1-4613-8620-9 |
Reference:
|
[14] McCarthy, P. J., Sivaramakrishnan, R.: Generalized Fibonacci sequences via arithmetical functions.Fibonacci Q. 28 (1990), 363-370. Zbl 0721.11008, MR 1077503 |
Reference:
|
[15] Sastry, K. P. R.: On the generalized type Möbius functions.Math. Stud. 31 (1963), 85-88. Zbl 0119.28001, MR 0166140 |
Reference:
|
[16] Schwab, E. D., Schwab, G.: $k$-Fibonacci numbers and Möbius functions.Integers 22 (2022), Article ID A64, 11 pages. Zbl 07569238, MR 4451564 |
. |