Previous |  Up |  Next

Article

Title: A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions (English)
Author: Schwab, Emil Daniel
Author: Schwab, Gabriela
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 2
Year: 2024
Pages: 237-246
Summary lang: English
.
Category: math
.
Summary: A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly. (English)
Keyword: Fibonacci sequence
Keyword: multiplicative arithmetic function
Keyword: Binet's formula
Keyword: Busche-Ramanujan identities
Keyword: Möbius inversion
MSC: 11A25
MSC: 11B39
DOI: 10.21136/MB.2023.0102-22
.
Date available: 2024-07-10T15:05:10Z
Last updated: 2024-07-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152470
.
Reference: [1] Apostol, T. M.: Möbius functions of order $k$.Pac. J. Math. 32 (1970), 21-27. Zbl 0188.34101, MR 0253999, 10.2140/pjm.1970.32.21
Reference: [2] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics. Springer, New York (1976). Zbl 0335.10001, MR 0434929, 10.1007/978-1-4757-5579-4
Reference: [3] Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S.: On a certain kind of generalized number-theoretical Möbius function.Math. Sci. 25 (2000), 72-77. Zbl 0965.11002, MR 1807073
Reference: [4] Catarino, P.: On some identities and generating functions for $k$-Pell numbers.Int. J. Math. Anal., Ruse 7 (2013), 1877-1884. Zbl 1285.11024, MR 3084999, 10.12988/ijma.2013.35131
Reference: [5] Cohen, E.: Arithmetical notes. X: A class of totients.Proc. Am. Math. Soc. 15 (1964), 534-539. Zbl 0124.02704, MR 0166146, 10.1090/S0002-9939-1964-0166146-9
Reference: [6] Falcón, S., Plaza, Á.: The $k$-Fibonacci sequence and the Pascal 2-triangle.Chaos Solitons Fractals 33 (2007), 38-49. Zbl 1152.11308, MR 2301846, 10.1016/j.chaos.2006.10.022
Reference: [7] Haukkanen, P.: A note on specially multiplicative arithmetic functions.Fibonacci Q. 26 (1988), 325-327. Zbl 0662.10003, MR 0967651
Reference: [8] Horadam, A. F.: Basic properties of a certain generalized sequence of numbers.Fibonacci Q. 3 (1965), 161-176. Zbl 0131.04103, MR 0186615
Reference: [9] Horadam, A. F.: Generating functions for powers of certain generalized sequences of numbers.Duke Math. J. 32 (1965), 437-446. Zbl 0131.04104, MR 0177975, 10.1215/S0012-7094-65-03244-8
Reference: [10] Hsu, L. C.: A difference-operational approach to the Möbius inversion formulas.Fibonacci Q. 33 (1995), 169-173. Zbl 0822.11005, MR 1329025
Reference: [11] Jhala, D., Sisodiya, K., Rathore, G. P. S.: On some identities for $k$-Jacobsthal numbers.Int. J. Math. Anal., Ruse 7 (2013), 551-556. Zbl 1283.11028, MR 3004318, 10.12988/ijma.2013.13052
Reference: [12] Kalman, D., Mena, R.: The Fibonacci numbers---exposed.Math. Mag. 76 (2003), 167-181. Zbl 1048.11014, MR 2083847, 10.2307/3219318
Reference: [13] McCarthy, P. J.: Introduction to Arithmetical Functions.Universitext. Springer, New York (1986). Zbl 0591.10003, MR 0815514, 10.1007/978-1-4613-8620-9
Reference: [14] McCarthy, P. J., Sivaramakrishnan, R.: Generalized Fibonacci sequences via arithmetical functions.Fibonacci Q. 28 (1990), 363-370. Zbl 0721.11008, MR 1077503
Reference: [15] Sastry, K. P. R.: On the generalized type Möbius functions.Math. Stud. 31 (1963), 85-88. Zbl 0119.28001, MR 0166140
Reference: [16] Schwab, E. D., Schwab, G.: $k$-Fibonacci numbers and Möbius functions.Integers 22 (2022), Article ID A64, 11 pages. Zbl 07569238, MR 4451564
.

Files

Files Size Format View
MathBohem_149-2024-2_6.pdf 225.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo