Previous |  Up |  Next

Article

Title: A generalization of reflexive rings (English)
Author: Çalcı, Mete Burak
Author: Chen, Huanyin
Author: Halıcıoğlu, Sait
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 2
Year: 2024
Pages: 225-235
Summary lang: English
.
Category: math
.
Summary: We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant. (English)
Keyword: reflexive ring
Keyword: reversible ring
Keyword: $J$-reflexive ring
Keyword: $J$-reversible ring
Keyword: ring extension
MSC: 13C99
MSC: 16D80
MSC: 16U80
DOI: 10.21136/MB.2023.0034-22
.
Date available: 2024-07-10T15:04:26Z
Last updated: 2024-07-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152469
.
Reference: [1] Calci, M. B., Chen, H., Halicioglu, S., Harmanci, A.: Reversibility of rings with respect to the Jacobson radical.Mediterr. J. Math. 14 (2017), Article ID 137, 14 pages. Zbl 1377.16034, MR 3654896, 10.1007/s00009-017-0938-2
Reference: [2] Cohn, P. M.: Reversible rings.Bull. Lond. Math. Soc. 31 (1999), 641-648. Zbl 1021.16019, MR 1711020, 10.1112/S0024609399006116
Reference: [3] Kaplansky, I.: Rings of Operators.Mathematics Lecture Note Series. W. A. Benjamin, New York (1968). Zbl 0174.18503, MR 0244778
Reference: [4] Kwak, T. K., Lee, Y.: Reflexive property of rings.Commun. Algebra 40 (2012), 1576-1594. Zbl 1252.16033, MR 2913004, 10.1080/00927872.2011.554474
Reference: [5] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent.J. Pure. Appl. Algebra 195 (2005), 243-259. Zbl 1071.16003, MR 2114274, 10.1016/j.jpaa.2004.08.011
Reference: [6] Mason, G.: Reflexive ideals.Commun. Algebra 9 (1981), 1709-1724. Zbl 0468.16024, MR 0631884, 10.1080/00927878108822678
Reference: [7] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit.Glasg. Math. J. 46 (2004), 227-236. Zbl 1057.16007, MR 2062606, 10.1017/S0017089504001727
Reference: [8] Yu, H.-P.: On quasi-duo rings.Glasg. Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342
.

Files

Files Size Format View
MathBohem_149-2024-2_5.pdf 222.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo