Title:
|
A generalization of reflexive rings (English) |
Author:
|
Çalcı, Mete Burak |
Author:
|
Chen, Huanyin |
Author:
|
Halıcıoğlu, Sait |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
2 |
Year:
|
2024 |
Pages:
|
225-235 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant. (English) |
Keyword:
|
reflexive ring |
Keyword:
|
reversible ring |
Keyword:
|
$J$-reflexive ring |
Keyword:
|
$J$-reversible ring |
Keyword:
|
ring extension |
MSC:
|
13C99 |
MSC:
|
16D80 |
MSC:
|
16U80 |
DOI:
|
10.21136/MB.2023.0034-22 |
. |
Date available:
|
2024-07-10T15:04:26Z |
Last updated:
|
2024-07-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152469 |
. |
Reference:
|
[1] Calci, M. B., Chen, H., Halicioglu, S., Harmanci, A.: Reversibility of rings with respect to the Jacobson radical.Mediterr. J. Math. 14 (2017), Article ID 137, 14 pages. Zbl 1377.16034, MR 3654896, 10.1007/s00009-017-0938-2 |
Reference:
|
[2] Cohn, P. M.: Reversible rings.Bull. Lond. Math. Soc. 31 (1999), 641-648. Zbl 1021.16019, MR 1711020, 10.1112/S0024609399006116 |
Reference:
|
[3] Kaplansky, I.: Rings of Operators.Mathematics Lecture Note Series. W. A. Benjamin, New York (1968). Zbl 0174.18503, MR 0244778 |
Reference:
|
[4] Kwak, T. K., Lee, Y.: Reflexive property of rings.Commun. Algebra 40 (2012), 1576-1594. Zbl 1252.16033, MR 2913004, 10.1080/00927872.2011.554474 |
Reference:
|
[5] Lam, T. Y., Dugas, A. S.: Quasi-duo rings and stable range descent.J. Pure. Appl. Algebra 195 (2005), 243-259. Zbl 1071.16003, MR 2114274, 10.1016/j.jpaa.2004.08.011 |
Reference:
|
[6] Mason, G.: Reflexive ideals.Commun. Algebra 9 (1981), 1709-1724. Zbl 0468.16024, MR 0631884, 10.1080/00927878108822678 |
Reference:
|
[7] Nicholson, W. K., Zhou, Y.: Rings in which elements are uniquely the sum of an idempotent and a unit.Glasg. Math. J. 46 (2004), 227-236. Zbl 1057.16007, MR 2062606, 10.1017/S0017089504001727 |
Reference:
|
[8] Yu, H.-P.: On quasi-duo rings.Glasg. Math. J. 37 (1995), 21-31. Zbl 0819.16001, MR 1316960, 10.1017/S0017089500030342 |
. |