Previous |  Up |  Next

Article

Title: On the class of positive disjoint weak $p$-convergent operators (English)
Author: Retbi, Abderrahman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 409-418
Summary lang: English
.
Category: math
.
Summary: We introduce and study the disjoint weak $p$-convergent operators in Banach lattices, and we give a characterization of it in terms of sequences in the positive cones. As an application, we derive the domination and the duality properties of the class of positive disjoint weak $p$-convergent operators. Next, we examine the relationship between disjoint weak $p$-convergent operators and disjoint $p$-convergent operators. Finally, we characterize order bounded disjoint weak $p$-convergent operators in terms of sequences in Banach lattices. (English)
Keyword: $p$-convergent operator
Keyword: disjoint $p$-convergent operator
Keyword: positive Schur property of order $p$
Keyword: order continuous norm
Keyword: Banach lattice
MSC: 46A40
MSC: 46B40
MSC: 46B42
DOI: 10.21136/MB.2023.0160-22
.
Date available: 2024-09-11T13:48:30Z
Last updated: 2024-09-11
Stable URL: http://hdl.handle.net/10338.dmlcz/152541
.
Reference: [1] Alikhani, M., Fakhar, M., Zafarani, J.: $p$-convergent operators and the $p$-Schur property.Anal. Math. 46 (2020), 1-12. Zbl 1449.46021, MR 4064575, 10.1007/s10476-020-0011-4
Reference: [2] Aliprantis, C. D., Burkinshaw, O.: Positive Operators.Springer, Dordrecht (2006). Zbl 1098.47001, MR 2262133, 10.1007/978-1-4020-5008-4
Reference: [3] Castillo, J. M. F., Sánchez, F.: Dunford-Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complutense Madr. 6 (1993), 43-59. Zbl 0807.46033, MR 1245024
Reference: [4] Chen, D., Chávez-Domínguez, J. A., Li, L.: $p$-converging operators and Dunford-Pettis property of order $p$.J. Math. Anal. Appl. 461 (2018), 1053-1066. Zbl 1464.46008, MR 3765477, 10.1016/j.jmaa.2018.01.051
Reference: [5] Dehghani, M. B., Moshtaghioun, S. M.: On the $p$-Schur property of Banach spaces.Ann. Funct. Anal. 9 (2018), 123-136. Zbl 1486.46008, MR 3758748, 10.1215/20088752-2017-0033
Reference: [6] Diestel, J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics 92. Springer, New York (1984). Zbl 0542.46007, MR 0737004, 10.1007/978-1-4612-5200-9
Reference: [7] Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics 43. Cambridge University Press, Cambridge (1995). Zbl 0855.47016, MR 1342297, 10.1017/CBO9780511526138
Reference: [8] Dodds, P. G., Fremlin, D. H.: Compact operators in Banach lattices.Isr. J. Math. 34 (1979), 287-320. Zbl 0438.47042, MR 0570888, 10.1007/BF02760610
Reference: [9] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523
Reference: [10] Ghenciu, I.: The $p$-Gelfand-Phillips property in space of operators and Dunford-Pettis like sets.Acta Math. Hung. 155 (2018), 439-457. Zbl 1413.46015, MR 3831309, 10.1007/s10474-018-0836-5
Reference: [11] Wnuk, W.: Banach lattices with the weak Dunford-Pettis property.Atti Semin. Mat. Fis. Univ. Modena 42 (1994), 227-236. Zbl 0805.46023, MR 1282338
Reference: [12] Zeekoei, E. D., Fourie, J. H.: On $p$-convergent operators on Banach lattices.Acta Math. Sin., Engl. Ser. 34 (2018), 873-890. Zbl 06881942, MR 3785686, 10.1007/s10114-017-7172-5
.

Files

Files Size Format View
MathBohem_149-2024-3_8.pdf 218.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo