Title:
|
On mean value properties involving a logarithm-type weight (English) |
Author:
|
Kuznetsov, Nikolay |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
149 |
Issue:
|
3 |
Year:
|
2024 |
Pages:
|
419-425 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Two new assertions characterizing analytically disks in the Euclidean plane $\mathbb {R}^2$ are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier. (English) |
Keyword:
|
harmonic function |
Keyword:
|
Helmholtz equation |
Keyword:
|
modified Helmholtz equation |
Keyword:
|
mean value property |
Keyword:
|
logarithmic weight |
Keyword:
|
characterization of balls |
MSC:
|
31A10 |
MSC:
|
35B05 |
MSC:
|
35J05 |
DOI:
|
10.21136/MB.2023.0072-23 |
. |
Date available:
|
2024-09-11T13:49:02Z |
Last updated:
|
2024-09-11 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/152542 |
. |
Reference:
|
[1] Duffin, R. J.: Yukawan potential theory.J. Math. Anal. Appl. 35 (1971), 105-130. Zbl 0214.36501, MR 0277743, 10.1016/0022-247X(71)90239-3 |
Reference:
|
[2] Evgrafov, M. A.: Asymptotic Estimates and Entire Functions.Nauka, Moscow (1979), Russian. Zbl 0447.30016, MR 0552276 |
Reference:
|
[3] Hansen, W., Netuka, I.: Inverse mean value property of harmonic functions.Math. Ann. 297 (1993), 147-156. Zbl 0794.31001, MR 1238412, 10.1007/BF01459493 |
Reference:
|
[4] Hansen, W., Netuka, I.: Corrigendum: "Inverse mean value property of harmonic functions".Math. Ann. 303 (1995), 373-375. Zbl 0839.31001, MR 1348805, 10.1007/BF01460995 |
Reference:
|
[5] Kuran, Ü.: On the mean-value property of harmonic functions.Bull. Lond. Math. Soc. 4 (1972), 311-312. Zbl 0257.31006, MR 0320348, 10.1112/blms/4.3.311 |
Reference:
|
[6] Kuznetsov, N.: Characterization of balls via solutions of the modified Helmholtz equation.C. R., Math., Acad. Sci. Paris 359 (2021), 945-948. Zbl 1477.35077, MR 4322995, 10.5802/crmath.250 |
Reference:
|
[7] Kuznetsov, N.: Mean value properties of solutions to the Helmholtz and modified Helmholtz equations.J. Math. Sci., New York 257 (2021), 673-683. Zbl 1477.35075, MR 4313622, 10.1007/s10958-021-05509-w |
Reference:
|
[8] Kuznetsov, N.: Inverse mean value property of metaharmonic functions.J. Math. Sci., New York 264 (2022), 603-608. Zbl 1497.35109, MR 4466320, 10.1007/s10958-022-06019-z |
Reference:
|
[9] Kuznetsov, N.: Metaharmonic functions: Mean flux theorem, its converse and related properties.St. Petersbg Math. J. 33 (2022), 243-254. Zbl 1485.35129, MR 4445758, 10.1090/spmj/1699 |
Reference:
|
[10] Kuznetsov, N.: Panharmonic functions: Mean value properties and related topics.J. Math. Sci., New York 269 (2023), 53-76. Zbl 07676279, MR 4546947, 10.1007/s10958-023-06254-y |
Reference:
|
[11] Kuznetsov, N.: Weighted means and characterization of balls.J. Math. Sci., New York 269 (2023), 853-858. Zbl 1536.31010, MR 4558666, 10.1007/s10958-023-06323-2 |
Reference:
|
[12] Netuka, I.: Harmonic functions and mean value theorems.Čas. Pěst. Mat. 100 (1975), 391-409 Czech. Zbl 0314.31007, MR 0463461, 10.21136/CPM.1975.117893 |
Reference:
|
[13] Netuka, I., Veselý, J.: Mean value property and harmonic functions.Classical and Modern Potential Theory and Applications NATO ASI Series, Ser. C: Mathematical and Physical Sciences 430. Kluwer Academic, Dordrecht (1994), 359-398. Zbl 0863.31012, MR 1321628 |
Reference:
|
[14] Nikiforov, A. F., Uvarov, V. B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications.Birkhäuser, Basel (1988). Zbl 0624.33001, MR 0922041, 10.1007/978-1-4757-1595-8 |
. |