Previous |  Up |  Next

Article

Title: On mean value properties involving a logarithm-type weight (English)
Author: Kuznetsov, Nikolay
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 419-425
Summary lang: English
.
Category: math
.
Summary: Two new assertions characterizing analytically disks in the Euclidean plane $\mathbb {R}^2$ are proved. Weighted mean value property of positive solutions to the Helmholtz and modified Helmholtz equations are used for this purpose; the weight has a logarithmic singularity. The obtained results are compared with those without weight that were found earlier. (English)
Keyword: harmonic function
Keyword: Helmholtz equation
Keyword: modified Helmholtz equation
Keyword: mean value property
Keyword: logarithmic weight
Keyword: characterization of balls
MSC: 31A10
MSC: 35B05
MSC: 35J05
DOI: 10.21136/MB.2023.0072-23
.
Date available: 2024-09-11T13:49:02Z
Last updated: 2024-09-11
Stable URL: http://hdl.handle.net/10338.dmlcz/152542
.
Reference: [1] Duffin, R. J.: Yukawan potential theory.J. Math. Anal. Appl. 35 (1971), 105-130. Zbl 0214.36501, MR 0277743, 10.1016/0022-247X(71)90239-3
Reference: [2] Evgrafov, M. A.: Asymptotic Estimates and Entire Functions.Nauka, Moscow (1979), Russian. Zbl 0447.30016, MR 0552276
Reference: [3] Hansen, W., Netuka, I.: Inverse mean value property of harmonic functions.Math. Ann. 297 (1993), 147-156. Zbl 0794.31001, MR 1238412, 10.1007/BF01459493
Reference: [4] Hansen, W., Netuka, I.: Corrigendum: "Inverse mean value property of harmonic functions".Math. Ann. 303 (1995), 373-375. Zbl 0839.31001, MR 1348805, 10.1007/BF01460995
Reference: [5] Kuran, Ü.: On the mean-value property of harmonic functions.Bull. Lond. Math. Soc. 4 (1972), 311-312. Zbl 0257.31006, MR 0320348, 10.1112/blms/4.3.311
Reference: [6] Kuznetsov, N.: Characterization of balls via solutions of the modified Helmholtz equation.C. R., Math., Acad. Sci. Paris 359 (2021), 945-948. Zbl 1477.35077, MR 4322995, 10.5802/crmath.250
Reference: [7] Kuznetsov, N.: Mean value properties of solutions to the Helmholtz and modified Helmholtz equations.J. Math. Sci., New York 257 (2021), 673-683. Zbl 1477.35075, MR 4313622, 10.1007/s10958-021-05509-w
Reference: [8] Kuznetsov, N.: Inverse mean value property of metaharmonic functions.J. Math. Sci., New York 264 (2022), 603-608. Zbl 1497.35109, MR 4466320, 10.1007/s10958-022-06019-z
Reference: [9] Kuznetsov, N.: Metaharmonic functions: Mean flux theorem, its converse and related properties.St. Petersbg Math. J. 33 (2022), 243-254. Zbl 1485.35129, MR 4445758, 10.1090/spmj/1699
Reference: [10] Kuznetsov, N.: Panharmonic functions: Mean value properties and related topics.J. Math. Sci., New York 269 (2023), 53-76. Zbl 07676279, MR 4546947, 10.1007/s10958-023-06254-y
Reference: [11] Kuznetsov, N.: Weighted means and characterization of balls.J. Math. Sci., New York 269 (2023), 853-858. Zbl 1536.31010, MR 4558666, 10.1007/s10958-023-06323-2
Reference: [12] Netuka, I.: Harmonic functions and mean value theorems.Čas. Pěst. Mat. 100 (1975), 391-409 Czech. Zbl 0314.31007, MR 0463461, 10.21136/CPM.1975.117893
Reference: [13] Netuka, I., Veselý, J.: Mean value property and harmonic functions.Classical and Modern Potential Theory and Applications NATO ASI Series, Ser. C: Mathematical and Physical Sciences 430. Kluwer Academic, Dordrecht (1994), 359-398. Zbl 0863.31012, MR 1321628
Reference: [14] Nikiforov, A. F., Uvarov, V. B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications.Birkhäuser, Basel (1988). Zbl 0624.33001, MR 0922041, 10.1007/978-1-4757-1595-8
.

Files

Files Size Format View
MathBohem_149-2024-3_9.pdf 202.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo