Title: | Regularizing effect of the interplay between coefficients in some noncoercive integral functionals (English) |
Author: | Zhang, Aiping |
Author: | Feng, Zesheng |
Author: | Gao, Hongya |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 74 |
Issue: | 3 |
Year: | 2024 |
Pages: | 915-925 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau <1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0<a(x)$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$. (English) |
Keyword: | regularizing effect |
Keyword: | interplay |
Keyword: | minimizer |
Keyword: | noncoercive integral functional |
MSC: | 49J45 |
DOI: | 10.21136/CMJ.2024.0216-24 |
. | |
Date available: | 2024-10-03T12:40:48Z |
Last updated: | 2024-10-04 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152589 |
. | |
Reference: | [1] Arcoya, D., Boccardo, L.: Regularizing effect of the interplay between coefficients in some elliptic equations.J. Func. Anal. 268 (2015), 1153-1166. Zbl 1317.35082, MR 3304596, 10.1016/j.jfa.2014.11.011 |
Reference: | [2] Arcoya, D., Boccardo, L.: Regularizing effect of $L^q$ interplay between coefficients in some elliptic equations.J. Math. Pures Appl. (9) 111 (2018), 106-125. Zbl 1390.35067, MR 3760750, 10.1016/j.matpur.2017.08.001 |
Reference: | [3] Boccardo, L., Croce, G.: Elliptic Partial Differential Equations: Existence and Regularity of Distributional Solutions.De Gruyter Studies in Mathematics 55. Walter De Gruyter, Berlin (2013). Zbl 1293.35001, MR 3154599, 10.1515/9783110315424 |
Reference: | [4] Boccardo, L., Orsina, L.: Existence and regularity of minima for integral functionals noncoercive in the energy space.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 95-130. Zbl 1015.49014, MR 1655511 |
Reference: | [5] Capone, C., Napoli, A. Passarelli di: Regularity results to a class of elliptic equations with explicit $u$-dependence and Orlicz growth.Adv. Differ. Equ. 29 (2024), 757-782. Zbl 07854804, MR 4740327, 10.57262/ade029-0910-757 |
Reference: | [6] Capone, C., Radice, T.: A regularity result for a class of elliptic equations with lower order terms.J. Elliptic Parabol. Equ. 6 (2020), 751-771. Zbl 1451.35042, MR 4169451, 10.1007/s41808-020-00082-w |
Reference: | [7] Degiovanni, M., Marzocchi, M.: Quasilinear elliptic equations with natural growth and quasilinear elliptic equations with singular drift.Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 206-215. Zbl 1421.35130, MR 3928322, 10.1016/j.na.2019.03.008 |
Reference: | [8] Giusti, E.: Direct Methods in the Calculus of Variations.World Scientific, Singapore (2003). Zbl 1028.49001, MR 1962933, 10.1142/5002 |
Reference: | [9] Li, Z.: Existence result to a parabolic equation with quadratic gradient term and an $L^1$ source.Acta Appl. Math. 163 (2019), 145-156. Zbl 1423.35206, MR 4008700, 10.1007/s10440-018-0217-7 |
Reference: | [10] Moreno-Mérida, L., Porzio, M. M.: Existence and asymptotic behavior of a parabolic equation with $L^1$ data.Asymptotic Anal. 118 (2020), 143-159. Zbl 1454.35206, MR 4113595, 10.3233/ASY-191558 |
Reference: | [11] Radice, T.: A regularity result for nonuniformly elliptic equations with lower order terms.Stud. Math. 276 (2024), 1-17. Zbl 7887996, MR 4756832, 10.4064/sm230104-18-3 |
Reference: | [12] Zhang, C., Zhou, S.: Bounded very weak solutions for some non-uniformly elliptic equation with $L^1$ datum.Ann. Acad. Sci. Fenn., Math. 42 (2017), 95-103. Zbl 1367.35072, MR 3558517, 10.5186/aasfm.2017.4205 |
. |
Fulltext not available (moving wall 24 months)