[1] Auslender, A., Correa, R.:
Primal and dual stability results for variational inequalities. Comput. Optim. Appl. 17 (2000), 117-130.
DOI |
MR 1806249
[2] Auslender, A., Teboulle, M.:
Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities. Math. Program. 120 (2009), 27-48.
DOI |
MR 2496425
[3] Bertsekas, D. P., Tsitsiklis, J. N.:
Parallel and Distributed Computation: Numerical Methods. Prentice hall Englewood Cliffs, NJ 1989.
MR 0896902
[4] Borwein, J. M., Zhu, Q. J.:
Techniques of Variational Analysis. Springer Science and Business Media, New York 2004.
MR 2144010 |
Zbl 1076.49001
[5] Chang, T. H., Nedić, A., Scaglione, A.:
Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans. Automat. Control 59 (2014), 1524-1538.
DOI |
MR 3225227
[6] Chen, G., Xu, G., Li, W., Hong, Y.:
Distributed mirror descent algorithm with Bregman damping for nonsmooth constrained optimization. IEEE Trans. Automat. Control (2023), 1-8.
DOI |
MR 4664160
[7] Cherukuri, A., Cortés, J.:
Distributed generator coordination for initialization and anytime optimization in economic dispatch. IEEE Trans. Control Network Syst. 2 (2015), 226-237.
DOI |
MR 3401184
[8] Duchi, J. C., Agarwal, A., Wainwright, M. J.:
Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Automat. Control 57 (2011), 592-606.
DOI |
MR 2932818
[9] Facchinei, F., Pang, J. S.:
Finite-dimensional Variational Inequalities and Complementarity Problems. Springer Science and Business Media, 2007.
MR 1955648
[10] Gutman, I., Xiao, W.:
Generalized inverse of the Laplacian matrix and some applications. Bulletin (Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques) (2004), 15-23.
MR 2099614
[11] Hiriart-Urruty, J. B., Lemaréchal, C.:
Convex Analysis and Minimization Algorithms I: Fundamentals. Springer Science and Business Media, 2013.
MR 1261420
[12] Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H.:
Subgradient methods and consensus algorithms for solving convex optimization problems. In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190.
DOI
[13] Koshal, J., Nedić, A., Shanbhag, U. V.:
Multiuser optimization: Distributed algorithms and error analysis. SIAM J. Optim. 21 (2011), 1046-1081.
DOI |
MR 2837563
[14] Liang, S., Zeng, X., Hong, Y.:
Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function. IEEE Trans. Automat. Control 63 (2017), 1753-1759.
DOI |
MR 3807659
[15] Liang, S., Wang, L., Yin, G.:
Distributed smooth convex optimization with coupled constraints. IEEE Trans. Automat. Control 65 (2019), 347-353.
DOI |
MR 4052883
[16] Liang, S., Wang, L., Yin, G.:
Distributed dual subgradient algorithms with iterate-averaging feedback for convex optimization with coupled constraint. IEEE Trans. Cybernetics 51 (2019), 2529-2539.
DOI
[17] Liu, Q., Wang, J.:
A second-order multi-agent network for bound-constrained distributed optimization. IEEE Trans. Automat. Control 60 (2015), 3310-3315.
DOI |
MR 3432700
[18] Lou, Y., Hong, Y., Wang, S.:
Distributed continuous-time approximate projection protocols for shortest distance optimization problems. Automatica 69 (2016), 289-297.
DOI |
MR 3500113 |
Zbl 1338.93026
[19] Nedić, A., Ozdaglar, A.:
Approximate primal solutions and rate analysis for dual subgradient methods. SIAM J. Optim. 19 (2009), 1757-1780.
DOI |
MR 2486049
[20] Nesterov, Y.:
Introductory Lectures on Convex Optimization: A Basic Course. Springer Science and Business Media, 2003.
MR 2142598
[21] Nesterov, Y.:
Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Program. 109.2-3 (2007), 319-344.
DOI |
MR 2295146
[22] Nesterov, Y.:
Primal-dual subgradient methods for convex problems. Math. Program. 120 (2009), 221-259.
DOI |
MR 2496434
[23] Nesterov, Y., Shikhman, V.:
Dual subgradient method with averaging for optimal resource allocation. Europ. J. Oper. Res. 270 (2018), 907-916.
DOI |
MR 3814538
[24] Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Proc. 3rd International Symposium on Information Processing in Sensor Networks, 2004, pp. 20-27.
[25] Regina, S. B., Iusem, A.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, New York 2003.
[26] Rockafellar, R. T.:
Characterization of the subdifferentials of convex functions. Pacific J. Math. 17 (1966), 497-510.
DOI |
MR 0193549
[27] Rockafellar, R. T.:
On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149 (1970), 75-88.
DOI |
MR 0282272
[28] Ruszczynski, A.:
Nonlinear Optimization. Princeton University Press, 2011.
MR 2199043
[29] Shafarevich, I. R., Remizov, A. O.:
Linear Algebra and Geometry. Springer Science and Business Media, 2012.
MR 2963561
[30] Tu, Z., Li, W.:
Multi-agent solver for non-negative matrix factorization based on optimization. Kybernetika 57 (2021), 60-77.
DOI |
MR 4231857
[31] Xiao, L., Boyd, S.:
Optimal scaling of a gradient method for distributed resource allocation. J. Optim. Theory Appl. 129 (2006), 469-488.
DOI |
MR 2281152
[32] Xiao, L., Boyd, S., Kim, S. J.:
Distributed average consensus with least-mean-square deviation. J. Parallel Distributed Comput. 67 (2007), 33-46.
DOI
[33] Yao, J. C.:
Variational inequalities with generalized monotone operators. Math. Oper. Res. 19 (1994), 691-705.
DOI |
MR 1288894
[34] Yi, P., Hong, Y., Liu, F.:
Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems Control Lett. 83 (2015), 45-52.
DOI |
MR 3373270 |
Zbl 1327.93033
[35] Yi, P., Hong, Y., Liu, F.:
Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems. Automatica 74 (2016), 259-269.
DOI |
MR 3569392
[36] Yi, P., Pavel, L.:
A distributed primal-dual algorithm for computation of generalized Nash equilibria via operator splitting methods. In: 2017 IEEE 56th Annual Conference on Decision and Control, IEEE 2017, pp. 3841-3846.
DOI
[37] Zeng, X., Liang, S., Hong, Y., Chen, J.:
Distributed computation of linear matrix equations: An optimization perspective. IEEE Trans. Automat. Control 64 (2018), 1858-1873.
DOI |
MR 3951032
[38] Zeng, X., Yi, P., Hong, Y.:
Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2016), 5227-5233.
DOI |
MR 3708893
[39] Zhang, Y., Zavlanos, M.:
A consensus-based distributed augmented Lagrangian method. In: 2018 Conference on Decision and Control, IEEE 2018, pp. 1763-1768.
DOI
[40] Zhu, M., Martínez, S.:
On distributed convex optimization under inequality and equality constraints. IEEE Trans. Automat. Control 57 (2011), 151-164.
DOI |
MR 2917654