[1] al., Ch. C. Aggarwal et: Recommender systems, volume 1. 2016.
[2] Aherne, F. J., Thacker, N. A., Rockett, P. I.:
The bhattacharyya metric as an absolute similarity measure for frequency coded data. Kybernetika 34 (1998), 4, 363-368.
DOI |
MR 1658937
[3] Ahn, H. J.:
A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inform. Sci. 178 (2008), 1, 37-51.
DOI
[4] Al-Bashiri, H., Abdulgabber, M. A., Romli, A., Kahtan, H.:
An improved memory-based collaborative filtering method based on the topsis technique. PloS one 13 (2018), 10. e0204434.
DOI
[5] Amer, A. A, Abdalla, H. I., Nguyen, L.:
Enhancing recommendation systems performance using highly-effective similarity measures. Knowledge-Based Systems 217 (2021), 106842.
DOI
[6] Anand, P. B., Nath, R.: Content-based recommender systems. In: Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries. 2020, pp. 165-195.
[7] Ar, Y., Amrahov, Ş. E., Gasilov, N. A., Y.-Sert, S.:
A new curve fitting based rating prediction algorithm for recommender systems. Kybernetika 58 (2022), 3, 440-455.
DOI
[8] Belmessous, K., Sebbak, F., Batouche, A., al., et:
Co-rating aware evidential user-based collaborative filtering recommender system. In: International Conference on Computing Systems and Applications, Springer 2022, 51-60.
DOI
[9] Chen, M., Liu, P.:
Performance evaluation of recommender systems. Int. J. Performability Engrg. 13 (2017), 8, 1246.
DOI
[10] Dewi, R. K., Widodo, A. W., Sari, Y. A., Aziz, N. I. M.: Rank consistency of topsis in mobile based recommendation system. In: Proc. 5th International Conference on Sustainable Information Engineering and Technology, ACM Digital Library 2020, pp. 107-112.
[11] Feng, J., Fengs, X., Zhang, N., Peng, J.:
An improved collaborative filtering method based on similarity. PLoS One 13 (2018), 9, e0204003.
DOI
[12] Fkih, Fethi: Similarity measures for collaborative filtering-based recommender systems: Review and experimental comparison. Journal of King Saud University-Computer and Information Sciences, 2021.
[13] Forouzandeh, S., Rostami, M., Berahmand, K.:
A hybrid method for recommendation systems based on tourism with an evolutionary algorithm and topsis model. Fuzzy Inform. Engrg. 14 (2022), 1, 26-50.
DOI
[14] Gavalas, D., Konstantopoulos, Ch., Mastakas, K., Pantziou, G.:
Mobile recommender systems in tourism. J. Network Computer Appl. 39 (2014), 319-333.
DOI
[15] Gazdar, A., Hidri, L.:
A new similarity measure for collaborative filtering based recommender systems. Knowledge-Based Syst. 188 (2020), 105058.
DOI
[16] Guo, G., Zhang, J., Yorke-Smith, N.: A novel bayesian similarity measure for recommender systems. In ACM, editor, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pages 2619-2625, 2013.
[17] Harper, F. M., Konstan, J. A.: The movielens datasets: History and context. ACM Trans. Int. Intell. Systems (TIIS) 5 (2015), 4, 1-19.
[18] Hwang, Ch. L., Yoon, K.:
Multiple Attribute Decision Making: Methods and Applications A State-Of-The-Art Survey, volume 186. Springer Science Business Media, 2012.
MR 0610245
[19] Idrissi, N., Zellou, A.: A systematic literature review of sparsity issues in recommender systems. Social Network Anal. Mining 10 (2020), 1, 1-23.
[20] Jøsang, A.:
A logic for uncertain probabilities. Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 9 (2001), 3, 279-311.
DOI |
MR 1843261
[21] Jøsang, A.: Subjective Logic, volume 4. 2016.
[22] Karimi, M., Jannach, D., Jugovac, M.:
News recommender systems-survey and roads ahead. Inform. Process. Management 54 (2018), 6, 1203-1227.
DOI
[23] Khojamli, H., Razmara, J.:
Survey of similarity functions on neighborhood-based collaborative filtering. Expert Syst. Appl. 185 (2021), 115482.
DOI
[24] Kim, K.:
A new similarity measure to increase coverage of rating predictions for collaborative filtering. Appl. Intell. 53 (2023), 23, 28804-28818.
DOI
[25] Chetana, V. L., Seetha, H.:
Handling massive sparse data in recommendation systems. J. Inform. Knowledge Management (2024), 2450021.
DOI
[26] Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X.:
A new user similarity model to improve the accuracy of collaborative filtering. Knowledge-Based Syst. 56 (2014), 156-166.
DOI
[27] Manochandar, S., Punniyamoorthy, M.:
A new user similarity measure in a new prediction model for collaborative filtering. Appl. Intell. 51 (2021), 1, 586-615.
DOI
[28] Mataoui, M., Sebbak, F., Sidhoum, A. H., Harbi, T. E., Senouci, M. R., Belmessous, K.:
A hybrid recommendation system for researchgate academic social network. Social Network Anal. Mining 13 (2023), 1. 53.
DOI
[29] Olson, D. L.:
Comparison of weights in topsis models. Math. Comput. Modell. 40 (2004), 7-8, 721-727.
DOI |
MR 2106163
[30] Papadakis, H., Papagrigoriou, An., Panagiotakis, C., Kosmas, E., Fragopoulou, P.:
Collaborative filtering recommender systems taxonomy. Knowledge Inform. Syst. 64 (2022), 1, 35-74.
DOI
[31] Patra, B. K., Launonen, R., Ollikainen, V., Nandi, S.:
A new similarity measure using bhattacharyya coefficient for collaborative filtering in sparse data. Knowledge-Based Syst. 82 (2015), 163-177.
DOI
[32] Ricci, F., Rokach, L., Shapira, B.: Context-aware recommender systems: recommender systems handbook. In: Recommender Systems Handbook, Springer, 2011, pp. 217-253.
[33] Roy, D., Dutta, M.:
A systematic review and research perspective on recommender systems. J. Big Data 9 (2022), 1, 59.
DOI
[34] Sánchez, P., Bellogín, A.:
Building user profiles based on sequences for content and collaborative filtering. Inform. Process. Management 56 (2019), 1, 192-211.
DOI
[35] Seth, R., Sharaff, A.:
A comparative overview of hybrid recommender systems: Review, challenges, and prospects. Data Mining Machine Learning Appl. (2022), 57-98.
DOI
[36] Shojaei, M., Saneifar, H.:
MFSR: A novel multi-level fuzzy similarity measure for recommender systems. Expert Systems Appl. 177 (2021), 114969.
DOI
[37] Valcarce, D., Parapar, J., Barreiro, Á.:
Finding and analysing good neighbourhoods to improve collaborative filtering. Knowledge-Based Syst. 159 (2018), 193-202.
DOI
[38] Wang, D., Yih, Y., Ventresca, M.:
Improving neighbor-based collaborative filtering by using a hybrid similarity measurement. Expert Syst. Appl. 160 (2020), 113651.
DOI
[39] Wang, Y., Deng, J., Gao, J., Zhang, P.:
A hybrid user similarity model for collaborative filtering. Inform. Sci. 418 (2017), 102-118.
DOI
[40] Wang, Y., Wang, P., Liu, Z., Zhang, L. Y.:
A new item similarity based on $\alpha$-divergence for collaborative filtering in sparse data. Expert Syst. Appl. 166 (2021), 114074.
DOI
[41] Wu, X., Cheng, B., Chen, J.:
Collaborative filtering service recommendation based on a novel similarity computation method. IEEE Trans. Services Comput. 10 (2015), 3, 352-365.
DOI
[42] Wu, X., Huang, Y., Wang, S.:
A new similarity computation method in collaborative filtering-based recommendation system. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), IEEE, 2017, pp. 1-5.
DOI