[1] Al-Saggaf, U., Bettayeb, M., Djennoune, S.:
Fixed-time synchronization of memristor chaotic systems via a new extended high-gain observer. European J. Control 63 (2022), 1, 164-174.
DOI |
MR 4364865
[2] Andreu, C., Ramon, C.:
Addressing the relative degree restriction in nonlinear adaptive observers: A high-gain observer approach. J. Franklin Inst. 359 (2022), 8, 3857-3882.
DOI |
MR 4419528
[3] Astolfi, D., Zaccarian, L., Jungers, M.:
On the use of low-pass filters in high-gain observers. Systems Control Lett. 148 (2021), 104856.
DOI |
MR 4201528
[4] Chen, M., Chen, C.:
Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans. Automat. Control 52 (2007), 12, 2365-2369.
DOI |
MR 2374276
[5] Chen, H., Li, Y.:
Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities. Proc. Amer. Math. Soc. 135 (2007), 12, 1-7.
DOI 10.1090/S0002-9939-07-09024-7 |
MR 2341942
[6] Chen, C., Qian, C., Sun, Z., Liang, Y.:
Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity. IEEE Trans. Automat. Control 63 (2018), 7, 2212-2217.
DOI |
MR 3820224
[8] Chowdhury, D., Al-Nadawi, Y. K., Tan, X.:
Dynamic inversion-based hysteresis compensation using extended high-gain observer. Automatica 135 (2022), 109977.
DOI |
MR 4336445
[9] Duan, G.: High-order system approaches: III. observability and observer design. ACTA Automat. Sinica 46 (2020), 9, 1885-1895.
[10] Dutta, L., Das, D.:
Nonlinear disturbance observer based multiple‐model adaptive explicit model predictive control for nonlinear MIMO system. Int. J. Robust Nonlinear Control 33 (2023), 11, 5934-5955.
DOI |
MR 4600573
[11] Guo, X., Yang, G.:
Non-fragile H$\infty$ filter design for delta operator formulated systems with circular region pole constraints: an LMI optimization approach. ACTA Automatica Sinica 35 (2009), 9, 1209-1215.
DOI |
MR 2599699
[12] Hua, C., Guan, X.:
Synchronization of chaotic systems based on PI observer design. Physics Lett. A 334 (2005), 5-6, 382-389.
DOI
[13] Huang, J., Han, Z.:
Adaptive non-fragile observer design for the uncertain Lur'e differential inclusion system. Appl. Math. Modell. 37 (2013), 1-2, 72-81.
DOI 10.1016/j.apm.2012.01.001 |
MR 2994167
[14] Jeong, C. S., Yaz, E. E., Yaz, Y. I.:
Resilient design of discrete-time observers with general criteria using LMIs. Math. Computer Modell. 42 (2005), 9-10, 931-938.
DOI |
MR 2181289
[15] Zhang, H. Jian. H., Wang, Y., Liu, X.: Adaptive state disturbance observer design for nonlinear system with unknown lipschitz constant. Chinese Automation Congress 2015, pp. 880-885.
[16] Koo, M., Choi, H.:
State feedback regulation of high-order feedforward nonlinear systems with delays in the state and input under measurement sensitivity. Int. J. Systems Sci. 52 (2021), 10, 2034-2047.
DOI |
MR 4286478
[17] Lakshmanan, S., Joo, Y.:
Decentralized observer-based integral sliding mode control design of large-scale interconnected systems and its application to doubly fed induction generator-based wind farm model. Int. J. Robust Nonlinear Control 33 (2023), 10, 5758-5774.
DOI |
MR 4599705
[18] Li, G., Xu, D., Zhou, abd S.:
A parameter-modulated method for chaotic digital communication based on state observers. ATAC Physica Sinica 53 (2004), 3, 706-709.
DOI |
MR 2068906
[19] Li, W., Yao, X., Krstic, M.:
Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty. Automatica 120 (2020), 109112.
DOI |
MR 4118791
[20] Lin, Z.:
Co-design of linear low-and-high gain feedback and high gain observer for suppression of effects of peaking on semi-global stabilization. Automatica 137 (2022), 110124.
DOI |
MR 4360247
[21] Lin, L., Shen, Y.:
Adaptive anti-measurement-disturbance stabilization for a class of nonlinear systems via output feedback. J. Control Theory Appl. 2021.
DOI
[22] Liu, Y., Fei, S.: Chaos synchronization between the Sprott-B and Sprott-C with linear coupling. ATAC Physica Sinica 53 (2006), 3, 1035-1039.
[23] Liu, C., Liao, K., Qian, K., Li, Y., Ding, Q.: The robust sliding mode observer design for nonlinear system with measurement noise and multiple faults. Systems Engrg. Electron. (2022).
[24] Marino, R., Tomei, P.:
Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice Hall, Hertfordshire 1995.
Zbl 0833.93003
[25] Perruquetti, W., Floquet, T., Moulay, E.:
Finite-time observers: application to secure communication. IEEE Trans. Automat. Control 53 (2008), 1, 356-360.
DOI |
MR 2391590
[26] Shen, Y., Xia, X.:
Semi-global finite-time observers for nonlinear systems. Automatica 44 (2008), 12, 3152-3156.
DOI |
MR 2531419 |
Zbl 1153.93332
[27] Thau, F. E.:
Observing the state of nonlinear dynamic systems. Int. J. Control 17 (1973), 3, 471-479.
DOI
[28] Xiang, Z., Wang, R., Jiang, B.:
Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Systems Signal Process. 30 (2011), 1, 73-87.
DOI |
MR 2769375
[29] Yang, G., Wang, J.:
Robust nonfragile kalman filtering for uncertain linear systems with estimator gain uncertainty. IEEE Trans. Automat. Control 46 (2001), 2, 343-348.
DOI |
MR 1814586
[30] Zheng, Q., Xu, S., Zhang, Z.:
Nonfragile H-infinity observer design for uncertain nonlinear switched systems with quantization. Appl. Math. Comput. 386 (2020), 125435.
DOI |
MR 4114862