Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
spectral volume method; error estimate; superconvergence; high order \hbox {equation}
Summary:
We present a unified approach to studying the superconvergence property of the spectral volume (SV) method for high-order time-dependent partial differential equations using the local discontinuous Galerkin formulation. We choose the diffusion and third-order wave equations as our models to illustrate approach and the main idea. The SV scheme is designed with control volumes constructed using the Gauss points or Radau points in subintervals of the underlying meshes, which leads to two SV schemes referred to as GSV and RSV schemes, respectively. With a careful choice of numerical fluxes, we demonstrate that the schemes are stable and exhibit optimal error estimates. Furthermore, we establish superconvergence of the GSV and RSV for the solution itself and the auxiliary variables. To be more precise, we prove that the errors of numerical fluxes at nodes and for the cell averages are superconvergent with orders of ${\cal O}(h^{2k+1})$ and ${\cal O}(h^{2k} )$ for RSV and GSV, respectively. Superconvergence for the function value and derivative value approximations is also studied and the superconvergence points are identified at Gauss points and Radau points. Numerical experiments are presented to illustrate theoretical findings.
References:
[1] An, J., Cao, W.: Any order spectral volume methods for diffusion equations using the local discontinuous Galerkin formulation. ESAIM, Math. Model. Numer. Anal. 57 (2023), 367-394. DOI 10.1051/m2an/2023003 | MR 4555128 | Zbl 1529.65096
[2] Arnold, D. N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982), 742-760. DOI 10.1137/0719052 | MR 0664882 | Zbl 0482.65060
[3] Babuška, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K.: Computer-based proof of the existence of superconvergence points in the finite element method: Superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations. Numer. Methods Partial Differ. Equations 12 (1996), 347-392. DOI 10.1002/num.1690120303 | MR 1388445 | Zbl 0854.65089
[4] Cao, W.: Unified analysis of any order spectral volume methods for diffusion equations. J. Sci. Comput. 96 (2023), Article ID 90, 31 pages. DOI 10.1007/s10915-023-02309-z | MR 4629479 | Zbl 1529.65031
[5] Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72 (2017), 761-791. DOI 10.1007/s10915-017-0377-z | MR 3673694 | Zbl 1429.65226
[6] Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53 (2015), 1651-1671. DOI 10.1137/140996203 | MR 3365565 | Zbl 1328.65195
[7] Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52 (2014), 2555-2573. DOI 10.1137/130946873 | MR 3270187 | Zbl 1331.65128
[8] Cao, W., Zou, Q.: Analysis of spectral volume methods for 1D linear scalar hyperbolic equations. J. Sci. Comput. 90 (2022), Article ID 61, 29 pages. DOI 10.1007/s10915-021-01715-5 | MR 4357099 | Zbl 1481.65206
[9] Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47 (2010), 4044-4072. DOI 10.1137/090747701 | MR 2585178 | Zbl 1208.65137
[10] Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74 (2005), 1067-1095. DOI 10.1090/s0025-5718-04-01718-1 | MR 2136994 | Zbl 1069.76029
[11] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52 (1989), 411-435. DOI 10.2307/2008474 | MR 0983311 | Zbl 0662.65083
[12] Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998), 2440-2463. DOI 10.1137/S0036142997316712 | MR 1655854 | Zbl 0927.65118
[13] Godunov, S. K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb., N. Ser. 47 (1959), 271-306. MR 0119433 | Zbl 0171.46204
[14] Kannan, R.: A high order spectral volume formulation for solving equations containing higher spatial derivative terms: Formulation and analysis for third derivative spatial terms using the LDG discretization procedure. Commun. Comput. Phys. 10 (2011), 1257-1279. DOI 10.4208/cicp.070710.100111a | MR 2830847 | Zbl 1388.65079
[15] Kannan, R., Wang, Z. J.: A study of viscous flux formulations for a $p$-multigrid spectral volume Navier Stokes solver. J. Sci. Comput. 41 (2009), 165-199. DOI 10.1007/s10915-009-9269-1 | MR 2550366 | Zbl 1203.65160
[16] Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47 (2009), 675-698. DOI 10.1137/080720255 | MR 2475957 | Zbl 1189.65227
[17] Sun, Y., Wang, Z. J., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids. VI. Extension to viscous flow. J. Comput. Phys. 215 (2006), 41-58. DOI 10.1016/j.jcp.2005.10.019 | MR 2215651 | Zbl 1140.76381
[18] Wang, Z. J.: Spectral (finite) volume method for conservation laws on unstructured grids: Basic formulation. J. Comput. Phys. 178 (2002), 210-251. DOI 10.1006/jcph.2002.7041 | MR 1899140 | Zbl 0997.65115
[19] Wang, Z. J., Zhang, L., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids. IV. Extension to two-dimensional Euler systems. J. Comput. Phys. 194 (2004), 716-741. DOI 10.1016/j.jcp.2003.09.012 | MR 2034862 | Zbl 1039.65072
[20] Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34 (2005), 581-592. DOI 10.1016/j.compfluid.2003.05.006 | Zbl 1138.76391
Partner of
EuDML logo