[1] Babuška, I., Guo, B. Q.:
Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19 (1988), 172-203.
DOI 10.1137/0519014 |
MR 0924554 |
Zbl 0647.35021
[2] Babuška, I., Guo, B. Q.:
Regularity of the solution of elliptic problems with piecewise analytic data. II. The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions. SIAM J. Math. Anal. 20 (1989), 763-781.
DOI 10.1137/0520054 |
MR 1000721 |
Zbl 0706.35028
[4] Babuška, I., Osborn, J.:
Eigenvalue problems. Finite Element Methods 1 Handbook of Numerical Analysis II. North Holland, Amsterdam (1991), 641-789.
MR 1115240 |
Zbl 0875.65087
[5] Bacuta, C.:
Interpolation Between Subspaces of Hilbert Spaces and Applications to Shift Theorems for Elliptic Boundary Value Problems and Finite Element Methods: Ph. D. Thesis. Texas A&M University, College Station (2000).
MR 2701566
[9] Costabel, M., Dauge, M., Nicaise, S.:
Mellin analysis of weighted Sobolev spaces with nonhomogeneous norms on cones. Around the Research of Vladimir Maz'ya. I. Function Spaces International Mathematical Series (New York) 11. Springer, New York (2010), 105-136.
DOI 10.1007/978-1-4419-1341-8_4 |
MR 2723815 |
Zbl 1196.46024
[11] Costabel, M., Stephan, E.:
Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. Mathematical Models and Methods in Mechanics Banach Center Publications 15. PWN, Warsaw (1985), 175-251.
DOI 10.4064/-15-1-175-251 |
MR 0874845 |
Zbl 0655.65129
[12] Costabel, M., Stephan, E., Wendland, W. L.:
On boundary integral equations of the first kind for the bi-Laplacian in a polygonal domain. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 10 (1983), 197-241.
MR 0728434 |
Zbl 0563.45007
[21] Grisvard, P.:
Singularities in Boundary Value Problems. Recherches en Mathématiques Appliquées 22. Springer, Berlin (1992).
MR 1173209 |
Zbl 0766.35001
[24] Jerison, D. S., Kenig, C. E.:
Boundary value problems on Lipschitz domains. Studies in Partial Differential Equations MAA Studies in Mathematics 23. Mathematical Association of America, Washington (1982), 1-68.
MR 0716504 |
Zbl 0529.31007
[26] Kondrat'ev, V. A.:
Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16 (1967), 209-292 Russian.
MR 0226187 |
Zbl 0162.16301
[27] Kozlov, V. A., Maz'ya, V. G., Rossmann, J.:
Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs 52. AMS, Providence (1997).
DOI 10.1090/surv/052 |
MR 1469972 |
Zbl 0947.35004
[28] Maz'ya, V. G., Plamenevskij, B. A.:
The coefficients in the asymptotics of solutions of the elliptic boundary value problem in domains with conical points. Math. Nachr. 76 (1977), 29-60 Russian.
DOI 10.1002/mana.19770760103 |
MR 601608 |
Zbl 0359.35024
[29] Maz'ya, V. G., Plamenevskij, B. A.:
Estimates in $L_p$ and in Hölder classes and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary. Transl., Ser. 2, Am. Math. Soc. 123 (1984), 1-56 translation from Math. Nachr. 81 1978 25-82.
DOI 10.1090/trans2/123 |
MR 492821 |
Zbl 0554.35035
[31] McLean, W.:
Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000).
MR 1742312 |
Zbl 0948.35001
[32] Melenk, J. M.:
On Generalized Finite-Element Methods: Ph. D. Thesis. University of Maryland, College Park (1995).
MR 2692949
[34] Nicaise, S.:
Polygonal Interface Problems. Methoden und Verfahren der Mathematischen Physik 39. Peter Lang, Frankfurt am Main (1993).
MR 1236228 |
Zbl 0794.35040
[35] Rojik, C.:
$p$-Version Projection-Based Interpolation: Ph. D. Thesis. Technische Universität Wien, Wien (2019).
DOI 10.34726/hss.2019.65840
[38] Triebel, H.:
Interpolation Theory, Function Spaces, Differential Operators. Johann Ambrosius Barth, Heidelberg (1995).
MR 1328645 |
Zbl 0830.46028