[3] Alfonsi, L.:
The puzzle of global double field theory: Open problems and the case for a higher Kaluza-Klein perspective. Fortsch. Phys. 69 (7) (2021), 2000102.
DOI 10.1002/prop.202000102 |
MR 4282510
[4] Andrianopoli, L., D’Auria, R.:
N=1 and N=2 pure supergravities on a manifold with boundary. JHEP 08 (2014), 012.
DOI 10.1007/JHEP08(2014)012
[7] Andrianopoli, L., Ravera, L.:
On the geometric approach to the boundary problem in supergravity. Universe 7 (12) (2021), 463.
DOI 10.3390/universe7120463
[8] Attard, J., François, J.:
Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach II. Twistors. Classical Quantum Gravity 34 (8) (2017), 28 pp.
MR 3633535
[9] Attard, J., François, J.:
Tractors and twistors from conformal Cartan geometry: a Gauge theoretic approach I. Tractors. Adv. Theor. Math. Phys. 22 (8) (2018), 1831–1883.
DOI 10.4310/ATMP.2018.v22.n8.a1 |
MR 3984517
[14] Becchi, C., Rouet, A., Stora, R.:
Renormalization of the Abelian Higgs-Kibble Model. Comm. Math. Phys. 42 (1975), 127–162.
DOI 10.1007/BF01614158 |
MR 0389060
[16] Berezin, F.A.:
The method of second quantization. Pure Appl. Phys., New York, Academic Press, 1966.
MR 0208930
[17] Berezin, F.A.:
Introduction to Superanalysis. Mathematical Physics and Applied Mathematics, Springer, 1st ed., 1987.
MR 0914369
[19] Berezin, F.A., Marinov, M.S.:
Particle spin dynamics as the grassmann variant of classical mechanics. Ann. Physics 104 (2) (1977), 336–362.
DOI 10.1016/0003-4916(77)90335-9
[20] Berghofer, P., François, J., Friederich, S., Gomes, H., Hetzroni, G., Maas, A., Sondenheimer, R.: Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches. Elements in the Foundations of Contemporary Physics, Cambridge University Press, 2023.
[21] Bertlmann, R.A.:
Anomalies In Quantum Field Theory. International Series of Monographs on Physics, vol. 91, Oxford University Press, 1996., 1996.
MR 1373240
[22] Blagojević, M., Hehl, F.W., Kibble, T.W.B.: Gauge Theories of Gravitation. Imperial College Press, 2013.
[23] Blagojević, M., Hehland, F.W., Kibble, T.W.B.: Gauge Theories of Gravitation. Imperial College Press, 2013.
[24] Bonor, L.:
Fermions and Anomalies in Quantum Field Theories. Theoretical and Mathematical Physics, Springer Cham, 1st ed., 2023.
MR 4590535
[25] Bonora, L., Cotta-Ramusino, P.:
Some remark on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations. Comm. Math. Phys. 87 (1983), 589–603.
DOI 10.1007/BF01208267 |
MR 0691046
[26] Burdet, G., Duval, C., Perrin, M.:
Cartan structures on galilean manifolds: The chronoprojective geometry. J. Math. Phys. 24 (7) (1983), 1752–1760.
DOI 10.1063/1.525927 |
MR 0709508
[29] Čap, A., Slovák, J., Souček, V.:
Invariant operators on manifolds with almost hermitian symmetric structures. I. Invariant differentiation. Acta Math. Univ. Comenian. 66 (1997), 33–69.
MR 1474550
[30] Čap, A., Slovák, J., Souček, V.:
Invariant operators on manifolds with almost hermitian symmetric structures. II. Normal Cartan connections. Acta Math. Univ. Comenian. 66 (1997), 203–220.
MR 1620484
[31] Čap, A., Slovák, J., Souček, V.:
Invariant operators on manifolds with almost hermitian symmetric structures,.III. Standard operators. Di erential Geom. Appl. 12 (1) (2000), 51–84.
DOI 10.1016/S0926-2245(00)00003-6 |
MR 1757020
[32] Cartan, É.: Les espaces à connexion conforme. Ann. Polon. Math. 2 (1923), 171–221.
[33] Cartan, É.: Les récentes généralisations de la notion d’espace. Bull. Sci. Math. 48 (1924), 825–861.
[37] Castellani, L., Catenacci, R., Grassi, P.A.:
The geometry of supermanifolds and new supersymmetric actions. Nuclear Phys. B 899 (2015), 112–148.
MR 3398909
[38] Tullio Regge: An Eclectic Genius: From Quantum Gravity to Computer Play. vol. 9, World Scientific, 2019.
[39] Castellani, L., D’Auria, R., Fré, P.:
Supergravity and superstrings: A Geometric perspective. vol. 1–3, Singapore: World Scientific, 1991.
MR 1120023
[40] Castellani, L., D’Auria, R., Fré, P.:
Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity. World Scientific Pub. Co. Inc., 1991.
MR 1120023
[43] Catenacci, R., Pirola, G.P.:
A geometrical description of local and global anomalies. Lett. Math. Phys. 19 (1990), 45–51.
DOI 10.1007/BF00402259 |
MR 1040409
[46] Choquet-Bruhat, Y.:
General Relativity and the Einstein Equations. Oxford Mathematical Monographs, Oxford University Press, 2009.
MR 2473363
[48] Concha, P., Ravera, L., Rodríguez, E.:
On the supersymmetry invariance of flat supergravity with boundary. JHEP 01 (2018), 192.
MR 3919303
[49] Connes, A.:
Noncommutative Geometry Year 2000. Birkhäuser Basel, 2000, 481–559.
MR 1826266
[50] Connes, A., Marcolli, M.:
An Invitation to Noncommutative Geometry. ch. A walk in the non-commutative garden, pp. 1–128, World Scientific Publishing Company, 2008.
MR 2408150
[51] Cotta Ramusino, P., Reina, C.:
The action of the group of bundle-automorphisms on the space of connections and the geometry of gauge theories. J. Geom. Phys. 1 (3) (1984), 121–155.
DOI 10.1016/0393-0440(84)90022-6 |
MR 0828400
[53] Cremonini, C.A.:
The geometry of picture changing operators. accepted for publication in Adv. Theor. Math. Phys.; arXiv:2305.02828 [math-ph].
MR 4806830
[54] Cremonini, C.A., Grassi, P.A.:
Generalised cocycles and super p-branes. 6 2022.
MR 4761204
[58] D’Auria, R.: Geometric supergravity. 5 2020.
[59] D’Auria, R., Fré, P.:
Cartan integrable systems, that is differential free algebras, in supergravity. September School on Supergravity and Supersymmetry, vol. 9, 1982.
MR 0728778
[60] D’Auria, R., Fré, P.:
Geometric supergravity in d = 11 and its hidden supergroup. Nuclear Phys. B 201 (1982), 101–140, [Erratum: Nucl.Phys.B 206, 496 (1982)].
MR 0667482
[62] Quantum fields and strings: A course for mathematicians. Vol. 1, 2. Providence, RI: AMS, American Mathematical Society, 1999.
[64] Dubois-Violette, M., Kerner, R., Madore, J.:
Noncommutative differential geometry and new models of Gauge theory. J. Math. Phys. 31 (2) (1990), 323–330.
DOI 10.1063/1.528917 |
MR 1034168
[66] Eastwood, M., Bailey, T.:
Complex paraconformal manifolds – their differential geometry and twistor theory. Forum Math. 3 (1) (1991), 61–103.
MR 1085595
[68] Eder, K., Huerta, J., Noja, S.: Poincaré Duality for Supermanifolds, Higher Cartan Structures and Geometric Supergravity. 12 2023.
[71] Ehresmann, C.:
Sur la théorie des espaces fibrés. Colloque de topologie algébrique du CNRS, Paris, 1947, pp. 3–15.
MR 0035021
[72] Ehresmann, C., Collectif, :
Les connexions infinitésimales dans un espace fibré différentiable. Séminaire Bourbaki : années 1948/49 – 1949/50 – 1950/51, exposés 1–49, no. 1, Société mathématique de France, 1952, pp. 153–168.
MR 0042768
[74] Ferrara, S., Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Gauging the graded conformal group with unitary internal symmetries. Nuclear Pkhys. B129 (1977), 125.
[76] Fiorenza, D., Sati, H., Schreiber, U.:
Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields. Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018.
DOI 10.1142/S0219887815500188 |
MR 3305054
[78] Fiorenza, D., Sati, H., Schreiber, U.:
Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5. JHEP 02 (2020), 107.
DOI 10.1007/JHEP02(2020)107 |
MR 4089174
[79] François André, J.:
The dressing field method for diffeomorphisms: a relational framework. 2023.
MR 4771773
[80] François, J.:
Artificial versus substantial Gauge symmetries: A criterion and an application to the electroweak model. Philos. Sci. 86 (3) (2019), 472–496.
DOI 10.1086/703571 |
MR 3977906
[82] François, J.:
Bundle geometry of the connection space, covariant hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method. J. High Energy Phys. 2021 (3) (2021), 113 p.
MR 4261003
[83] François, J.: Differential geometry of Gauge theory: An introduction. PoS, Modave 2020 (2021), 002.
[84] François, J., Parrini, N., Boulanger, N.:
Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions. J. High Energy Phys. 2021 (12) (2021), 186.
MR 4369415
[85] Friedrich, H.:
Twistor connection and normal conformal Cartan connection. Gen. Relativity Gravitation 8 (5) (1977), 303–312.
DOI 10.1007/BF00771141 |
MR 0474086
[86] Galperin, A.S., Ivanov, E.A., Ogievetsky, V.I., Sokatchev, E.S.:
Harmonic superspace. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2007.
MR 2450736
[87] Giovanelli, M.:
Nothing but coincidences: the point-coincidence and einstein’s struggle with the meaning of coordinates in physics. European J. Philos. Sci. 11 (2) (2021), 45.
DOI 10.1007/s13194-020-00332-7 |
MR 4254163
[88] Golfand, Y.A., Likhtman, E.P.:
Extension of the algebra of Poincare group generators and violation of p invariance. JETP Lett. 13 (1971), 323–326.
MR 0672786
[89] Gover, R.:
Aspects of parabolic invariant theory. Proceedings of the 18th Winter School “Geometry and Physics”, 1999, pp. 25–47.
MR 1692257
[90] Hamilton, M.:
Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics. 1st ed., Universitext. Springer, 2018.
MR 3837560
[91] Hélein, F.: Gauge and gravity theories on a dynamical principal bundle. 10 2023.
[94] Jurčo, B., Sämann, C., Schreiber, U., Wolf, M.:
Higher sructures in M-theory. Fortsch. Phys. 67 (8–9) (2019), 1910004.
MR 4016007
[95] Jurčo, B., Sämann, C., Wolf, M.:
Semistrict higher Gauge theory. JHEP 2015 (4) (2015), 1–67.
MR 3351282
[96] Jurčo, B., Sämann, C., Wolf, M.:
Higher groupoid bundles, higher spaces, and self-dual tensor field equations. Fortsch. Phys. 64 (8–9 (2016), 674–717.
DOI 10.1002/prop.201600031 |
MR 3548195
[98] Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.:
Properties of conformal supergravity. Phys. Rev. D17 (1978), 3179.
MR 0523881
[105] Kobayashi, S.:
Canonical forms on frame bundles of higher order contact. Proc. Sympos. Pure Math. American Mathematical Society III (1961), 186–193.
MR 0126810
[107] Kobayashi, S., Nagano, T.:
On projective connections. J. Math. Mech. 13 (1964), 215–235.
MR 0159284
[108] Kobayashi, S., Nomizu, K.:
Foundations of Differential Geometry. vol. I, Wiley & Sons, 1963.
MR 0152974 |
Zbl 0119.37502
[109] Kobayashi, S., Nomizu, K.:
Foundations of Differential Geometry. vol. II, Wiley & Sons, 1969.
MR 0238225 |
Zbl 0175.48504
[110] Kolar, I., Michor, P., Slovak, J.:
Natural Operations in Differential Geometry. Springer-Verlag Berlin, 1993.
MR 1202431
[112] Kostant, B.:
Graded manifolds, graded Lie theory, and prequantization. Differ. geom. Meth. math. Phys., Proc. Symp. Bonn 1975, Lect. Notes Math., 1977.
MR 0580292
[115] Marle, C.M.:
The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, in Geometry and Topology of Manifolds. vol. 76, Banach Center Publication, 2007.
MR 2342856
[120] Nakahara, M.:
Geometry, Topology and Physics. 2nd Edition. Graduate Student Series in Physics, Taylor & Francis, 2003.
MR 2001829
[121] Ne’eman, Y., Regge, T.:
Gravity and spergravity as Gauge theories on a group manifold. Riv. Nuovo Cim 1 (5) (1978), 1–43.
DOI 10.1007/BF02724472 |
MR 0507169
[126] O’Raifeartaigh, L.:
The dawning of Gauge theory. Princeton Series in Physics, Princeton University Press, 1997.
MR 1374603
[129] Penrose, R., Rindler, W.:
Spinors and Space-Time. vol. 1, Cambridge University Press, 1984.
MR 0838301
[130] Penrose, R., Rindler, W.:
Spinors and Space-Time. vol. 2, Cambridge University Press, 1986.
MR 0838301
[131] Ravera, L.:
On the hidden symmetries of D=11 supergravity. Springer Proc. Math. Stat. 396 (2022), 211–222.
MR 4607963
[134] Rogers, A.:
Supermanifolds. World Scientific Publishing Company, 2007.
MR 2320438
[136] Rovelli, C.:
Quantum gravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2004.
MR 2106565
[137] Rovelli, C.: Why gauge?. Found. Phys. 44 (2014), 91–104.
[138] Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, 2014.
[139] Rüdiger, R., Penrose, R.:
The Dirac equation and spinning particles in general relativity. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 377 (1771), 1981, pp. 417–424.
MR 0629659
[140] Sachse, C.: A categorical formulation of superalgebra and supergeometry. arXiv:0802.4067, 2008.
[143] Sati, H., Schreiber, U., Stasheff, J.:
$L_{\infty }$ algebra connections and applications to String- and Chern-Simons n-transport. 2 2008.
MR 2742762
[144] Sauer, T.:
Field equations in teleparallel space-time: Einstein’s fernparallelismus approach toward unified field theory. Historia Math. 33 (4) (2006), 399–439, Special Issue on Geometry and its Uses in Physics, 1900-1930.
DOI 10.1016/j.hm.2005.11.005 |
MR 2276051
[147] Schreiber, U.: Differential cohomology in a cohesive $\infty $-topos. arXiv:1310.7930 [math-ph].
[149] Sharpe, R.W.:
Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate text in Mathematics, vol. 166, Springer, 1996.
MR 1453120
[153] Stachel, J.:
The hole argument and some physical and philosophical implications. Living Reviews in Relativity 17 (1) (2014), 1.
DOI 10.12942/lrr-2014-1
[154] Steenrod, N.:
The Topology of Fibre Bundles. (PMS–14). Princeton University Press, 1951.
MR 0039258
[156] Stora, R.:
Algebraic structure and topological origin of chiral anomalies. Progress in Gauge Field Theory, Cargese 1983, vol. 115, NATO ASI Ser.B,, Plenum Press, 1984.
MR 0782343
[158] Tamborino, J.:
Relational observables in gravity: a review. SIGMA 8 (2012), 017.
MR 2942822
[160] Tyutin, L.V.: Gauge invariance in field theory and statistical physics in operator formalism. Lebedev preprint FIAN, 39:1975.
[161] Unzicker, A., Case, T.: Translation of Einstein’s Attempt of a Unified Field Theory with Teleparallelism. arXiv:physics/0503046 [physics.hist-ph], 2005.
[167] Weyl, H.: Gravitation and electricity. vol. 1918, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1918.
[168] Weyl., H.: A new extension of relativity theory. Ann. Physics 59 (1919), 101–133.
[169] Weyl, H.: Gravitation and the electron. Proceedings of the National Academy of Sciences, vol. 15 (4), 1929, pp. 323–334.
[170] Wise, D.K.:
Topological Gauge Theory, Cartan Geometry, and Gravity. Ph.D. thesis, 2007.
MR 2710391
[171] Wise, D.K.:
Symmetric space, cartan connections and gravity in three and four dimensions. SIGMA 5 (2009), 080–098.
MR 2529167
[174] Yang, C.N.: Monopoles and fiber bundles. Subnuclear Series 14 (1978), 53–84.
[177] Zardecki, A.:
A formulation of supergravity based on Cartan’s connection. J. Math. Phys. 34 (1993), 1487–1496.
DOI 10.1063/1.530168 |
MR 1210229