[1] Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.:
Differential operators on the base affine space and a study of ${\mathfrak{g}}$-modules. Halsted Press [John Wiley & Sons, Inc.], New York-Toronto, Ont., 1975, 21–64.
MR 0578996
[3] Čap, A., Slovák, J., Souček, V.:
Bernstein-Gelfand-Gelfand sequence. Ann. of Math. (2) 154 (1) (2001), 97–113.
DOI 10.2307/3062111 |
MR 1847589
[4] De Commer, K.:
On a correspondence between ${\rm SU}_q(2),\ \widetilde{E}_q(2)$ and $\widetilde{\rm SU}_q(1,1)$. Comm. Math. Phys. 304 (1) (2011), 187–228.
DOI 10.1007/s00220-011-1208-y |
MR 2793934
[5] De Commer, K., Dzokou Talla, J.R.:
Invariant integrals on coideals and their drinfeld doubles. arXiv:2112.07476 [math.QA], 2021.
MR 4776189
[6] De Commer, K., Dzokou Talla, J.R.:
Quantum $sl(2,\mathbb{R})$ and its irreducible representations. arXiv:2107.04258 [math.QA], 2021.
MR 4750927
[8] Drinfel’d, V.G.:
Quantum groups. Proc. Int. Congr. Math., vol. 1, Berkeley/Calif 1986, 1987, pp. 798–820.
MR 0934283
[10] Faddeev, L.D., Reshetikhin, N.Yu., Takhtadzhan, L.A.:
Quantization of Lie groups and Lie algebras. Algebraic Analysis 1 (1989), 129–139, Dedicated to Prof. Mikio Sato on the Occas. of his Sixtieth Birthday.
MR 1015339
[11] Fioresi, R., Lledó, M.A.:
The Minkowski and conformal superspaces. The classical and quantum descriptions. Hackensack, NJ: World Scientific, 2015.
MR 3328668
[12] Gavarini, F.:
The global quantum duality principle. J. Reine Angew. Math. 612 (2007), 17–33.
MR 2364072
[13] Heckenberger, I., Kolb, S.:
On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras. Transform. Groups 12 (4) (2007), 647–655.
DOI 10.1007/s00031-007-0059-2 |
MR 2365438
[14] Heckenberger, I., Kolb, S.:
Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds. J. Geom. Phys. 57 (11) (2007), 2316–2344.
DOI 10.1016/j.geomphys.2007.07.005 |
MR 2360244
[15] Helgason, S.:
Differential geometry, Lie groups, and symmetric spaces. Grad. Stud. Math., vol. 34, Providence, RI: American Mathematical Society (AMS), 2001, reprint with corrections of the 1978 original edition.
DOI 10.1090/gsm/034 |
MR 1834454
[16] Jimbo, M.:
A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11 (1986), 247–252.
DOI 10.1007/BF00400222 |
MR 0841713
[17] Joseph, A.:
Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer Verlag, Berlin, 1995.
MR 1315966
[18] Kassel, Ch.:
Quantum groups. Grad. Texts Math., vol. 155, New York, NY: Springer Verlag, 1995.
MR 1321145
[19] Klimyk, A., Schmüdgen, K.:
Quantum groups and their representations. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997.
MR 1492989
[20] Knapp, A.W.:
Lie groups beyond an introduction. 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002.
MR 1920389
[21] Koelink, E., Kustermans, J.:
A locally compact quantum group analogue of the normalizer of $\rm SU(1,1)$ in ${\rm SL}(2,\mathbb{C})$. Comm. Math. Phys. 233 (2) (2003), 231–296.
DOI 10.1007/s00220-002-0736-x |
MR 1962042
[22] Kulish, P.P., Reshetikhin, N.Yu.:
Quantum linear problem for the sine-gordon equation and higher representations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101 (1981), 101–110.
MR 0623928
[23] Montgomery, S.:
Hopf algebras and their actions on rings. Reg. Conf. Ser. Math., vol. 82, Providence, RI: American Mathematical Society, 1993, Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992.
MR 1243637
[24] Ó Buachalla, R., Somberg, P.: Lusztig’s quantum root vectors and a Dolbeault complex for the $A$-series full quantum flag manifolds. arXiv:2312.13493 [math.QA], 2023.
[26] Sklyanin, E.K.: On an algebra generated by quadratic relations. Uspekhi Mat. Nauk 40 (1985), 214.
[29] Varadarajan, V.S.:
Lie groups, Lie algebras, and their representations. Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.
MR 0376938
[31] Voigt, Ch., Yuncken, R.:
Equivariant Fredholm modules for the full quantum flag manifold of ${\rm SU}_q(3)$. Doc. Math. 20 (2015), 433–490.
DOI 10.4171/dm/495 |
MR 3398718
[32] Voigt, Ch., Yuncken, R.:
Complex semisimple quantum groups and representation theory. Lect. Notes in Math., Springer, Cham, 2020.
MR 4162277
[34] Woronowicz, S.L.:
Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181.
DOI 10.2977/prims/1195176848 |
MR 0890482