Previous |  Up |  Next

Article

Keywords:
quantum groups; representation theory; semisimple Lie algebras
Summary:
The goal of this expository paper is to give a quick introduction to $q$-deformations of semisimple Lie groups. We discuss principally the rank one examples of $\mathcal{U}_q(\mathfrak{sl}_2)$, $\mathcal{O}(\mathrm{SU}_q(2))$, $\mathcal{D}(\mathrm{SL}_q(2,\mathbb{C}))$ and related algebras. We treat quantized enveloping algebras, representations of $\mathcal{U}_q(\mathfrak{sl}_2)$, generalities on Hopf algebras and quantum groups, $*$-structures, quantized algebras of functions on $q$-deformed compact semisimple groups, the Peter-Weyl theorem, $*$-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of $\mathrm{SL}_q(2,\mathbb{C})$, the Plancherel formula for $\mathrm{SL}_q(2,\mathbb{C})$. This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.
References:
[1] Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of ${\mathfrak{g}}$-modules. Halsted Press [John Wiley & Sons, Inc.], New York-Toronto, Ont., 1975, 21–64. MR 0578996
[2] Buffenoir, E., Roche, Ph.: Harmonic analysis on the quantum Lorentz group. Comm. Math. Phys. 207 (3) (1999), 499–555. DOI 10.1007/s002200050736 | MR 1727241
[3] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequence. Ann. of Math. (2) 154 (1) (2001), 97–113. DOI 10.2307/3062111 | MR 1847589
[4] De Commer, K.: On a correspondence between ${\rm SU}_q(2),\ \widetilde{E}_q(2)$ and $\widetilde{\rm SU}_q(1,1)$. Comm. Math. Phys. 304 (1) (2011), 187–228. DOI 10.1007/s00220-011-1208-y | MR 2793934
[5] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their drinfeld doubles. arXiv:2112.07476 [math.QA], 2021. MR 4776189
[6] De Commer, K., Dzokou Talla, J.R.: Quantum $sl(2,\mathbb{R})$ and its irreducible representations. arXiv:2107.04258 [math.QA], 2021. MR 4750927
[7] Dixmier, J.: Enveloping algebras. Grad. Stud. Math., vol. 11, Providence, RI: AMS, American Mathematical Society, 1996. DOI 10.1090/gsm/011/02 | MR 1393197
[8] Drinfel’d, V.G.: Quantum groups. Proc. Int. Congr. Math., vol. 1, Berkeley/Calif 1986, 1987, pp. 798–820. MR 0934283
[9] Drinfel’d, V.G.: Quantum groups. Journal of Soviet Mathematics 41 92) (1988), 898–915. DOI 10.1007/BF01247086 | MR 0869575
[10] Faddeev, L.D., Reshetikhin, N.Yu., Takhtadzhan, L.A.: Quantization of Lie groups and Lie algebras. Algebraic Analysis 1 (1989), 129–139, Dedicated to Prof. Mikio Sato on the Occas. of his Sixtieth Birthday. MR 1015339
[11] Fioresi, R., Lledó, M.A.: The Minkowski and conformal superspaces. The classical and quantum descriptions. Hackensack, NJ: World Scientific, 2015. MR 3328668
[12] Gavarini, F.: The global quantum duality principle. J. Reine Angew. Math. 612 (2007), 17–33. MR 2364072
[13] Heckenberger, I., Kolb, S.: On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras. Transform. Groups 12 (4) (2007), 647–655. DOI 10.1007/s00031-007-0059-2 | MR 2365438
[14] Heckenberger, I., Kolb, S.: Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds. J. Geom. Phys. 57 (11) (2007), 2316–2344. DOI 10.1016/j.geomphys.2007.07.005 | MR 2360244
[15] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Grad. Stud. Math., vol. 34, Providence, RI: American Mathematical Society (AMS), 2001, reprint with corrections of the 1978 original edition. DOI 10.1090/gsm/034 | MR 1834454
[16] Jimbo, M.: A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11 (1986), 247–252. DOI 10.1007/BF00400222 | MR 0841713
[17] Joseph, A.: Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer Verlag, Berlin, 1995. MR 1315966
[18] Kassel, Ch.: Quantum groups. Grad. Texts Math., vol. 155, New York, NY: Springer Verlag, 1995. MR 1321145
[19] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. MR 1492989
[20] Knapp, A.W.: Lie groups beyond an introduction. 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1920389
[21] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $\rm SU(1,1)$ in ${\rm SL}(2,\mathbb{C})$. Comm. Math. Phys. 233 (2) (2003), 231–296. DOI 10.1007/s00220-002-0736-x | MR 1962042
[22] Kulish, P.P., Reshetikhin, N.Yu.: Quantum linear problem for the sine-gordon equation and higher representations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101 (1981), 101–110. MR 0623928
[23] Montgomery, S.: Hopf algebras and their actions on rings. Reg. Conf. Ser. Math., vol. 82, Providence, RI: American Mathematical Society, 1993, Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. MR 1243637
[24] Ó Buachalla, R., Somberg, P.: Lusztig’s quantum root vectors and a Dolbeault complex for the $A$-series full quantum flag manifolds. arXiv:2312.13493 [math.QA], 2023.
[25] Podleś, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Comm. Math. Phys. 130 (2) (1990), 381–431. DOI 10.1007/BF02473358 | MR 1059324
[26] Sklyanin, E.K.: On an algebra generated by quadratic relations. Uspekhi Mat. Nauk 40 (1985), 214.
[27] Van Daele, A.: Multiplier Hopf algebras. Trans. Amer. Math. Soc. 342 (2) (1994), 917–932. DOI 10.1090/S0002-9947-1994-1220906-5 | MR 1220906
[28] Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140 (2) (1998), 323–366. DOI 10.1006/aima.1998.1775 | MR 1658585
[29] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
[30] Voigt, Ch., Yuncken, R.: The plancherel formula for complex semisimple quantum groups. Ann. Sci. Éc. Norm. Sup. (to appear), https://arxiv.org/abs/1906.02672, 2019. MR 4637134
[31] Voigt, Ch., Yuncken, R.: Equivariant Fredholm modules for the full quantum flag manifold of ${\rm SU}_q(3)$. Doc. Math. 20 (2015), 433–490. DOI 10.4171/dm/495 | MR 3398718
[32] Voigt, Ch., Yuncken, R.: Complex semisimple quantum groups and representation theory. Lect. Notes in Math., Springer, Cham, 2020. MR 4162277
[33] Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111 (4) (1987), 613–665. DOI 10.1007/BF01219077 | MR 0901157
[34] Woronowicz, S.L.: Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. DOI 10.2977/prims/1195176848 | MR 0890482
Partner of
EuDML logo