[1] Alekseev, A., Krutov, A.: Group-valued moment maps on even and odd simple $\mathfrak{g}$-modules. In preparations.
[2] Alekseev, A., Meinrenken, E.: 
The non-commutative Weil algebra. Invent. Math. 139 (1) (2000), 135–172, arXiv:math/9903052 [math.DG]. 
DOI 10.1007/s002229900025 | 
MR 1728878[3] Alekseev, A., Meinrenken, E.: 
Lie theory and the Chern-Weil homomorphism. Ann. Sci. Éc. Norm. Supér. (4) 38 (2) (2005), 303–338, arXiv:math/0308135 [math.RT]. 
MR 2144989[4] Aschieri, P., Castellani, L.: 
An introduction to noncommutative differential geometry on quantum groups. Internat. J. Modern Phys. A 8 (10) (1993), 1667–1706. 
DOI 10.1142/S0217751X93000692 | 
MR 1216230[7] Bouarroudj, S., Krutov, A., Leites, D., Shchepochkina, I.: 
Non-degenerate invariant (super) symmetric bilinear forms on simple Lie (super)algebras. Algebr. Represent. Theory 21 (5) (2018), 897–941, arXiv:1806.05505 [math.RT]. 
DOI 10.1007/s10468-018-9802-8 | 
MR 3855668[8] Cartan, H.: 
La transgression dans un groupe de Lie et dans un espace fibré principal. Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège, 1951, pp. 57–71. 
MR 0042427[9] Cartan, H.: 
Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie. Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson $\&$ Cie, Paris, 1951, pp. 15–27. 
MR 0042426[10] Cheng, S.-J.: 
Differentiably simple Lie superalgebras and representations of semisimple Lie superalgebras. J. Algebra 173 (1) (1995), 1–43. 
DOI 10.1006/jabr.1995.1076 | 
MR 1327359[11] Drinfeld, V. G.: 
Quasi-Hopf algebras. Algebra i Analiz 1 (6) (1989), 114–148. 
MR 1047964[12] Drinfeld, V.G.: 
Quantum groups. Proceedings of the International Congress of Mathematicians, Amer. Math. Soc., Providence, RI, Berkeley, Calif., 1986, 1987, pp. 798–820. 
MR 0934283[13] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: 
Tensor categories. Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2015. 
MR 3242743[14] Guillemin, V.W., Sternberg, S.: 
Supersymmetry and equivariant de Rham theory. Mathematics Past and Present, Springer-Verlag, Berlin, 1999, With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)]. 
MR 1689252[17] Huang, J.-S., Pandžić, P.: 
Dirac operators in representation theory. Mathematics: Theory $\&$ Applications, Birkhäuser Boston, Inc., Boston, MA,, 2006. 
MR 2244116 | 
Zbl 1103.22008[19] Klimyk, A., Schmüdgen, K.: 
Quantum groups and their representations. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. 
MR 1492989[20] Kostant, B.: 
Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the $\rho $-decomposition $C(\mathfrak{g}) =$ End$V_\rho \otimes C(P)$, and the $\mathfrak{g}$-module structure of $\bigwedge \mathfrak{g}$. Adv. Math. 125 (2) (1997), 275–350. 
DOI 10.1006/aima.1997.1608 | 
MR 1434113[21] Krutov, A., Pandžić, P.: Cubic Dirac operator for $U_q({\mathfrak{sl}}_2)$. arXiv:2209.09591 [math.RT].
[22] Krutov, A.O., Ó Buachalla, R., Strung, K.R.: 
Nichols algebras and quantum principal bundles. Int. Math. Res. Not. 2023 (23) (2023), 20076–20117. 
DOI 10.1093/imrn/rnac366 | 
MR 4675067[24] Meinrenken, E.: 
Clifford algebras and Lie theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. 
MR 3052646[25] Schupp, P., Watts, P., Zumino, B.: 
Cartan calculus on quantum Lie algebras. Differential geometric methods in theoretical physics (Ixtapa-Zihuatanejo, 1993), 1994, pp. 125–134. 
MR 1337698[26] Woronowicz, S.L.: 
Twisted SU(2) group. An example of a noncommutative differential calculus. (2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. 
DOI 10.2977/prims/1195176848 | 
MR 0890482