Previous |  Up |  Next

Article

Keywords:
quantum group; quantum $\mathfrak{sl}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action
Summary:
Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak{sl}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak{sl}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.
References:
[1] Burdik, C., Navratil, O., Posta, S.: The adjoint representation of quantum algebra $U_q(sl_2)$. J. Nonlinear Math. Phys. 16 (1) (2009), 63–75. DOI 10.1142/S1402925109000066 | MR 2571814
[2] Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc. 15 (1) (2002), 185–202. DOI 10.1090/S0894-0347-01-00383-6 | MR 1862801
[3] Huang, J.-S., Pandžić, P.: Dirac Operators in Representation Theory. Mathematics: Theory and Applications, Birkhauser, 2006. MR 2244116
[4] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics, pp. xx+552, Springer-Verlag, Berlin, 1997. MR 1492989
[5] Majid, S.: Quantum and braided linear algebra. J. Math. Phys. 34 (1993), 1176–1196, https://doi.org/10.1063/1.530193 DOI 10.1063/1.530193 | MR 1207978
[6] Majid, S.: Transmutation theory and rank for quantum braided groups. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 113, 1993, pp. 45–70. DOI 10.1017/S0305004100075769 | MR 1188817
[7] Majid, S.: Algebras and Hopf algebras in braided categories. Advances in Hopf algebras, vol. 158, Marcel Dekker, Lec. Notes Pure Appl. Math. ed., 1994. MR 1289422
[8] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, 1995. MR 1381692
[9] Majid, S.: Quantum and braided ZX calculus. J. Phys. A: Math. Theor. 55 (2022), 34 pp., paper No. 254007. DOI 10.1088/1751-8121/ac631f | MR 4438638
[10] Pandžić, P., Somberg, P.: Dirac operator for the quantum group $U_q(\mathfrak{sl}_3)$. in preparation.
[11] Pandžić, P., Somberg, P.: Dirac operator and its cohomology for the quantum group $U_q(\mathfrak{sl}_2)$. J. Math. Phys. 58 (4) (2017), 13 pp., Paper No. 041702. MR 3632540
[12] Parthasarathy, R.: Dirac operator and the discrete series. Ann. of Math. 96 (1972), 1–30. DOI 10.2307/1970892 | MR 0318398
[13] Vogan, D.: Dirac operators and unitary representations. 3 talks at MIT Lie groups seminar, Fall 1997.
Partner of
EuDML logo