Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Darcy's porosity parameter; thermo-mechanical stress coefficient; strain thermal conductivity coefficient
Summary:
The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects are noticed on velocity and temperature distributions. These effects can be attributed to Darcy's friction offered by the medium. The approximation results obtained in the present paper are in good agreement with the earlier numerical results of thermo-viscous fluid flows in plane geometry.
References:
[1] Aparna, P., Padmaja, P., Pothanna, N., Murthy, J. V. Ramana: Uniform flow of viscous fluid past a porous sphere saturated with micro polar fluid. Biointerface Research Appl. Chem. 13 (2023), Article ID 69, 12 pages. DOI 10.33263/BRIAC131.069
[2] Aparna, P., Pothanna, N., Murthy, J. V. Ramana: Viscous fluid flow past a permeable cylinder. Numerical Heat Transfer and Fluid Flow Springer, Singapore (2018), 285-293. DOI 10.1007/978-981-13-1903-7_33
[3] Aparna, P., Pothanna, N., Murthy, J. V. Ramana: Rotary oscillations of a permeable sphere in an incompressible couple stress fluid. Advances in Fluid Dynamics Springer, Singapore (2020), 135-146. DOI 10.1007/978-981-15-4308-1_10
[4] Aparna, P., Pothanna, N., Murthy, J. V. Ramana, Sreelatha, K.: Flow generated by slow steady rotation of a permeable sphere in a micro-polar fluid. Alexandria Eng. J. 56 (2017), 679-685. DOI 10.1016/j.aej.2017.01.018
[5] Bakar, S. A., Arifin, N. M., Pop, I.: Stability analysis on mixed convection nanofluid flow in a permeable porous medium with radiation and internal heat generation. J. Adv. Res. Micro Nano Eng. 13 (2023), 1-17. DOI 10.37934/armne.13.1.117
[6] Benkara-Mostefa, K. H., Benchabi-Lanani, R.: Heat transfer and entropy generation of turbulent flow in corrugated channel using nanofluid. J. Adv. Res. Fluid Mech. Thermal Sci. 109 (2023), 136-150. DOI 10.37934/arfmts.109.2.136150
[7] Chu, Y.-M., Alzahrani, F., Mopuri, O., Ganteda, C., Khan, M. I., Laksmi, P. J., Khan, S. U., Eldin, S. M.: Thermal impact of hybrid nanofluid due to inclined oscillatory porous surface with thermo-diffusion features. Case Stud. Thermal Eng. 42 (2023), Article ID 102695, 16 pages. DOI 10.1016/j.csite.2023.102695
[8] Coleman, B. D., Mizel, V. J.: Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40 (1964), 1116-1125. DOI 10.1063/1.1725257 | MR 0161576
[9] Darcy, H.: Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris (1856), French.
[10] Ferry, J. D.: Viscoelastic Properties of Polymers. John Wiley & Sons, New York (1961).
[11] Green, A. E., Naghdi, P. M.: A dynamical theory of interacting continua. Int. J. Eng. Sci. 3 (1965), 231-241. DOI 10.1016/0020-7225(65)90046-7 | MR 0186267
[12] Heuer, N., Linss, T.: A balanced finite-element method for an axisymmetrically loaded thin shell. Appl. Math., Praha 69 (2024), 151-168. DOI 10.21136/AM.2024.0134-23 | MR 4728189 | Zbl 7893329
[13] Juwari, J., Wicaksono, A. D. Monlei, Arbianzah, T., Anugraha, R. P., Handogo, R.: Simulation of dispersion and explosion in petrol station using 3D computational fluid dynamics FLACS software. J. Adv. Res. Fluid Mech. Thermal Sci. 109 (2023), 113-135. DOI 10.37934/arfmts.109.2.113135
[14] Kelly, P. D.: Some viscometric flows of incompressible thermoviscous fluids. Int. J. Eng. Sci. 2 (1965), 519-533. DOI 10.1016/0020-7225(65)90007-8 | MR 0177574
[15] Khan, M., Malik, M. Y., Salahuddin, T., Hussian, A.: Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet. Results Phys. 8 (2018), 862-868. DOI 10.1016/j.rinp.2018.01.005
[16] Khan, M., Salahuddin, T., Malik, M. Y., Khan, F.: Change in internal energy of Carreau fluid flow along with ohmic heating: A von Karman application. Physica A 547 (2020), Article ID 123440, 11 pages. DOI 10.1016/j.physa.2019.123440 | MR 4081575 | Zbl 07530142
[17] Khan, M., Salahuddin, T., Malik, M. Y., Tanveer, A., Hussain, A., Alqahtani, A. S.: 3-D axisymmetric Carreau nanofluid flow near the Homann stagnation region along with chemical reaction: Application Fourier's and Fick's laws. Math. Comput. Simul. 170 (2020), 221-235. DOI 10.1016/j.matcom.2019.10.019 | MR 4046640 | Zbl 1510.76200
[18] Koh, S. L., Eringen, A. C.: On the foundations of non-linear thermo-viscoelasticity. Int. J. Eng. Sci. 1 (1963), 199-229. DOI 10.1016/0020-7225(63)90034-X | MR 0151044
[19] Devi, P. N. Lakshmi, Meduri, P. K.: Oscillatory flow of couple stress fluid flow over a contaminated fluid sphere with slip condition. CFD Lett. 15 (2023), 148-165. DOI 10.37934/cfdl.15.8.148165 | MR 4543464
[20] Langlois, W., Rivlin, R.: Slow steady-state flow of visco-elastic fluids through non-circular tubes. Rend. Mat. Appl., V. Ser. 22 (1963), 169-185. MR 0154526 | Zbl 0113.40405
[21] Li, S., Khan, M. I., Alruqi, A. B., Khan, S. U., Abdullaev, S. S., Fadhl, B. M., Makhdoum, B. M.: Entropy optimized flow of Sutterby nanomaterial subject to porous medium: Buongiorno nanofluid model. Heliyon 9 (2023), Article ID e17784, 16 pages. DOI 10.1016/j.heliyon.2023.e17784
[22] Rao, P. Nageswara, Ramacharyulu, N. C. Pattabhi: Steady flow of a second-order thermo-viscous fluid over an infinite plate. Proc. Indian Acad. Sci., Sect. A, Part III 88 (1979), 157-162. DOI 10.1007/BF02871612 | Zbl 0406.76012
[23] Padmaja, P., Aparna, P., Gorla, R. S. R., Pothanna, N.: Numerical solution of singularly perturbed two parameter problems using exponential splines. Int. J. Appl. Mech. Eng. 26 (2021), 160-172. DOI 10.2478/ijame-2021-0025
[24] Pothanna, N., Aparna, P., Gorla, R. S. R.: A numerical study of coupled non-linear equations of thermo-viscous fluid flow in cylindrical geometry. Int. J. Appl. Mech. Eng. 22 (2017), 965-979. DOI 10.1515/ijame-2017-0062
[25] Pothanna, N., Aparna, P., Sireesha, G., Padmaja, P.: Analytical and numerical study of steady flow of thermo-viscous fluid between two horizontal parallel plates in relative motion. Commun. Math. Appl. 13 (2022), 1427-1441. DOI 10.26713/cma.v13i5.2254
[26] Pothanna, N., Ramacharyulu, N. C. Pattabhi, Rao, P. Nageswara: Slow steady motion of a thermo-viscous fluid in a porous slab bounded between two impermeable parallel plates. Adv. Appl. Sci. Res. 3 (2012), 2866-2883.
[27] Pothanna, N., Ramacharyulu, N. C. Pattabhi, Rao, P. Nageswara: Steady flow of a slightly thermo-viscous fluid in a porous slab bounded between two fixed porous parallel plates. Int. J. Math. Arch. 3 (2012), 1125-1135.
[28] Pothanna, N., Ramacharyulu, N. C. Pattabhi, Rao, P. Nageswara: Flow of slightly thermo-viscous fluid in a porous slab bounded between two permeable parallel plates. Int. J. Adv. Appl. Math. Mech. 2 (2015), 225-233. MR 3372994 | Zbl 1359.76028
[29] Preziosi, L., Farina, A.: On Darcy's law for growing porous media. Int. J. Non-Linear Mech. 37 (2002), 485-491. DOI 10.1016/S0020-7462(01)00022-1 | Zbl 1346.76194
[30] Rivlin, R. S.: The solution of problems in second order elasticity theory. J. Ration. Mech. Anal. 2 (1953), 58-81. DOI 10.1512/iumj.1953.2.52002 | MR 0051676 | Zbl 0050.18601
[31] Rivlin, R. S., Topakoglu, C.: A theorem in the theory of finite elastic deformations. J. Ration. Mech. Anal. 3 (1954), 581-589. DOI 10.1512/iumj.1954.3.53030 | MR 0063231 | Zbl 0056.42603
[32] Terapabkajornded, Y., Orankitjaroen, S., Licht, C., Weller, T.: Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory. Appl. Math., Praha 69 (2024), 25-48. DOI 10.21136/AM.2023.0013-23 | MR 4709332 | Zbl 07830497
[33] Yamamoto, K., Yoshida, Z.: Flow through a porous wall with convective acceleration. J. Phys. Soc. Japan 37 (1974), 774-779. DOI 10.1143/JPSJ.37.774
Partner of
EuDML logo