[6] Byrd, R. H., Nocedal, J.:
A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal. 26 (1989), 727-739.
DOI 10.1137/0726042 |
MR 0997665 |
Zbl 0676.65061
[8] Bouter, M. L. de Leeuw den, Gijzen, M. B. van, Remis, R. F.:
CG variants for general-form regularization with an application to low-field MRI. Numerical Mathematics and Advanced Applications: ENUMATH 2019 Lecture Notes in Computational Science and Engineering 139. Springer, Cham (2019), 673-681.
DOI 10.1007/978-3-030-55874-1_66 |
MR 4266546 |
Zbl 1475.65038
[12] Gould, N. I. M., Orban, D., Toint, P. L.:
CUTEr and SifDec: A constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29 (2003), 373-394.
DOI 10.1145/962437.96243 |
Zbl 1068.90526
[16] Li, W., Liu, Y., Yang, J., Wu, W.:
A new conjugate gradient method with smoothing $L_{1/2}$ regularization based on a modified secant equation for training neural networks. Neural Process. Lett. 48 (2018), 955-978.
DOI 10.1007/s11063-017-9737-9
[17] Nezhadhosein, S.:
A modified descent spectral conjugate gradient method for unconstrained optimization. Iran. J. Sci. Technol., Trans. A, Sci. 45 (2021), 209-220.
DOI 10.1007/s40995-020-01012-0 |
MR 4208137
[21] Sun, M., Liu, J., Wang, Y.:
Two improved conjugate gradient methods with application in compressive sensing and motion control. Math. Probl. Eng. 2020 (2020), Article ID 9175496, 11 pages.
DOI 10.1155/2020/9175496 |
MR 4099297 |
Zbl 7347959