Previous |  Up |  Next

Article

Title: One-sided $n$-suspended categories (English)
Author: He, Jing
Author: Hu, Yonggang
Author: Zhou, Panyue
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1007-1039
Summary lang: English
.
Category: math
.
Summary: For an integer $n\geq 3$, we introduce a simultaneous generalization of $(n-2)$-exact categories and $n$-angulated categories, referred to as one-sided $n$-suspended categories. Notably, one-sided $n$-angulated categories are specific instances of this structure. We establish a framework for transitioning from these generalized categories to their $n$-angulated counterparts. Additionally, we present a method for constructing $n$-angulated quotient categories from Frobenius $n$-prile categories. Our results unify and extend the previous work of Jasso on $n$-exact categories, Lin on $(n+2)$-angulated categories, and Li on one-sided suspended categories. (English)
Keyword: triangulated category
Keyword: $n$-angulated category
Keyword: exact category
Keyword: $(n-2)$-exact category
Keyword: right $n$-angulated category
Keyword: one-sided $n$-suspended category
MSC: 18E10
MSC: 18G80
DOI: 10.21136/CMJ.2024.0424-23
.
Date available: 2024-12-15T06:34:34Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152687
.
Reference: [1] Bergh, P. A., Thaule, M.: The axioms for $n$-angulated categories.Algebr. Geom. Topol. 13 (2013), 2405-2428. Zbl 1272.18008, MR 3073923, 10.2140/agt.2013.13.2405
Reference: [2] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448, 10.1515/CRELLE.2011.177
Reference: [3] Jasso, G.: $n$-abelian and $n$-exact categories.Math. Z. 283 (2016), 703-759. Zbl 1356.18005, MR 3519980, 10.1007/s00209-016-1619-8
Reference: [4] Li, Z.-W.: Homotopy theory in additive categories with suspensions.Commun. Algebra 49 (2021), 5137-5170. Zbl 1484.18023, MR 4328528, 10.1080/00927872.2021.1938102
Reference: [5] Lin, Z.: $n$-angulated quotient categories induced by mutation pairs.Czech. Math. J. 65 (2015), 953-968. Zbl 1363.18009, MR 3441328, 10.1007/s10587-015-0220-3
Reference: [6] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories.Commun. Algebra 45 (2017), 828-840. Zbl 1371.18010, MR 3562541, 10.1080/00927872.2016.1175591
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo