Previous |  Up |  Next

Article

Title: Transfer of derived equivalences from subalgebras to endomorphism algebras II (English)
Author: Pan, Shengyong
Author: Yu, Jiahui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 4
Year: 2024
Pages: 1041-1058
Summary lang: English
.
Category: math
.
Summary: We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result. (English)
Keyword: approximation
Keyword: derived equivalence
Keyword: subring
Keyword: endomorphism algebra
Keyword: Auslander-Yoneda algebra
MSC: 16G10
MSC: 16S10
MSC: 18G15
DOI: 10.21136/CMJ.2024.0452-23
.
Date available: 2024-12-15T06:35:03Z
Last updated: 2024-12-16
Stable URL: http://hdl.handle.net/10338.dmlcz/152688
.
Reference: [1] Aihara, T., Iyama, O.: Silting mutation in triangulated categories.J. Lond. Math. Soc., II. Ser. 85 (2012), 633-668. Zbl 1271.18011, MR 2927802, 10.1112/jlms/jdr055
Reference: [2] Brüstle, T., Pan, S.: Transfer of derived equivalences from subalgebras to endomorphism algebras.J. Algebra Appl. 15 (2016), Article ID 1650100, 10 pages. Zbl 1345.18010, MR 3479804, 10.1142/S0219498816501000
Reference: [3] Buan, A. B., Marsh, R. B., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics.Adv. Math. 204 (2006), 572-618. Zbl 1127.16011, MR 2249625, 10.1016/j.aim.2005.06.003
Reference: [4] Chen, Y.: Derived equivalences in $n$-angulated categories.Algebr. Represent. Theory 16 (2013), 1661-1684. Zbl 1291.18016, MR 3127353, 10.1007/s10468-012-9377-8
Reference: [5] Chen, Y.: Derived equivalences between subrings.Commun. Algebra 42 (2014), 4055-4065. Zbl 1312.16004, MR 3200079, 10.1080/00927872.2013.804925
Reference: [6] Chen, Y., Hu, W.: Approximations, ghosts and derived equivalences.Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 813-840. Zbl 1442.18033, MR 4080461, 10.1017/prm.2018.120
Reference: [7] Fedele, F.: Auslander-Reiten $(d+2)$-angles in subcategories and a $(d+2)$-angulated generalisation of a theorem by Brüning.J. Pure App. Algebra 223 (2019), 3354-3580. Zbl 1411.16017, MR 3926227, 10.1016/j.jpaa.2018.11.017
Reference: [8] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448, 10.1515/CRELLE.2011.177
Reference: [9] Happel, D., Unger, L.: Complements and the generalized Nakayama conjecture.Algebras and Modules. II CMS Conference Proceedings 24. AMS, Providence (1998), 293-310. Zbl 0944.16010, MR 1648633
Reference: [10] Hoshino, M., Kato, Y.: An elementary construction of tilting complexes.J. Pure Appl. Algebra 177 (2003), 159-175. Zbl 1012.18006, MR 1954331, 10.1016/S0022-4049(02)00176-7
Reference: [11] Hu, W., Koenig, S., Xi, C.: Derived equivalences from cohomological approximations and mutations of $\Phi$-Yoneda algebras.Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 589-629. Zbl 1336.16014, MR 3063574, 10.1017/S030821051100045X
Reference: [12] Hu, W., Xi, C.: $D$-split sequences and derived equivalences.Adv. Math. 227 (2011), 292-318. Zbl 1260.16017, MR 2782196, 10.1016/j.aim.2011.01.023
Reference: [13] Hu, W., Xi, C.: Derived equivalences for $\Phi$-Auslander-Yoneda algebras.Trans. Am. Math. Soc. 365 (2013), 5681-5711. Zbl 1279.18008, MR 3091261, 10.1090/S0002-9947-2013-05688-7
Reference: [14] Iyama, O., Oppermann, S.: $n$-representation-finite algebras and $n$-APR tilting.Trans. Am. Math. Soc. 363 (2011), 6575-6614. Zbl 1264.16015, MR 2833569, 10.1090/S0002-9947-2011-05312-2
Reference: [15] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules.Invent. Math. 172 (2008), 117-168. Zbl 1140.18007, MR 2385669, 10.1007/s00222-007-0096-4
Reference: [16] Karoubi, M.: Algèbres de Clifford et K-théorie.Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270 French. Zbl 0194.24101, MR 0238927, 10.24033/asens.1163
Reference: [17] Neeman, A.: Triangulated Categories.Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). Zbl 0974.18008, MR 1812507, 10.1515/9781400837212
Reference: [18] Pan, S.: Symmetric approximation sequences, Beilinson-Green algebras and derived equivalences.Math. Scand. 128 (2022), 451-506. Zbl 1531.16009, MR 4529806, 10.7146/math.scand.a-133541
Reference: [19] Rickard, J.: Derived categories and stable equivalence.J. Pure Appl. Algebra 61 (1989), 303-317. Zbl 0685.16016, MR 1027750, 10.1016/0022-4049(89)90081-9
Reference: [20] Rickard, J.: Derived equivalences as derived functors.J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. Zbl 0683.16030, MR 1099084, 10.1112/jlms/s2-43.1.37
Reference: [21] Rudakov, A. N.: Exceptional collections, mutations and helices.Helices and Vector Bundles London Mathematical Society Lecture Note Series 148. Cambridge Univerity Press, Cambridge (1990), 1-6. Zbl 0721.14011, MR 1074777, 10.1017/CBO9780511721526.001
Reference: [22] Xi, C.: On the finitistic dimension conjecture. I: Related to representation-finite algebras.J. Pure Appl. Algebra 193 (2004), 287-305. Zbl 1067.16016, MR 2076389, 10.1016/j.jpaa.2004.03.009
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo