Previous |  Up |  Next

Article

Title: Characterization of the order induced by uninorm with the underlying drastic product or drastic sum (English)
Author: Liu, Zhi-qiang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 6
Year: 2024
Pages: 723-739
Summary lang: English
.
Category: math
.
Summary: In this article, we investigate the algebraic structures of the partial orders induced by uninorms on a bounded lattice. For a class of uninorms with the underlying drastic product or drastic sum, we first present some conditions making a bounded lattice also a lattice with respect to the order induced by such uninorms. And then we completely characterize the distributivity of the lattices obtained. (English)
Keyword: uninorm
Keyword: triangular norm
Keyword: divisibility
Keyword: partial order
Keyword: distributive lattice
MSC: 03B20
MSC: 06B05
MSC: 94D05
DOI: 10.14736/kyb-2024-6-0723
.
Date available: 2025-01-28T08:58:40Z
Last updated: 2025-01-28
Stable URL: http://hdl.handle.net/10338.dmlcz/152856
.
Reference: [1] Aşıcı, E., Karaçal, F.: On the $T$-partial order and properties..Inform. Sci. 267 (2014), 323-333. MR 3177320,
Reference: [2] Aşıcı, E.: An order induced by nullnorms and its properties..Fuzzy Sets Syst. 325 (2017), 35-46. MR 3690353,
Reference: [3] Aşıcı, E.: On the properties of the $F$-partial order and the equivalence of nullnorms..Fuzzy Sets Syst. 346 (2018), 72-84. MR 3812758,
Reference: [4] Birkhoff, G.: Lattice Theory, 3rd edition..Colloquium Publishers, American Mathematical Society, 1967. MR 0227053
Reference: [5] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms..Fuzzy Sets Syst. 120 (2001), 385-394. Zbl 0977.03026, MR 1829256,
Reference: [6] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inform. Sci. 367-368 (2016), 221-231. MR 3684677,
Reference: [7] Duan, Q. H., Zhao, B.: Maximal chains on the interval $[0,1]$ with respect to t-norm-partial orders and uninorm-partial orders..Inform. Sci. 516 (2020), 419-428. MR 4047496,
Reference: [8] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets..Kluwer Academic Publisher, Boston 2000. MR 1890229
Reference: [9] Kesicioğlu, Ü. Ertuğrul M N., Karaçal, F.: Ordering based on uninorms..Inform. Sci. 330 (2016), 315-327.
Reference: [10] Gupta, V. K., Jayaram, B.: Importation lattices..Fuzzy Sets Syst. 405 (2021), 1-17. MR 4191306,
Reference: [11] Gupta, V. K., Jayaram, B.: Order based on associative operations..Inform. Sci. 566 (2021), 326-346. MR 4246139,
Reference: [12] Gupta, V. K., Jayaram, B.: Clifford's order obtained from uninorms on bounded lattices..Fuzzy Sets Syst. 462 (2023), 108384. MR 4584388,
Reference: [13] Karaçal, F., Kesicioğlu, M. N.: A $T$-partial order obtained from t-norms..Kybernetika 47 (2011), 300-314. MR 2828579,
Reference: [14] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Syst. 261 (2015), 33-43. MR 3291484,
Reference: [15] Kesicioğlu, M. N.: Some notes on the partial orders induced by a uninorm and a nullnorm in a bounded lattice..Fuzzy Sets Syst. 346 (2018), 55-71. MR 3812757,
Reference: [16] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms..Fuzzy Sets Syst. 268 (2015), 59-71. MR 3320247,
Reference: [17] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: An equivalence relation based on the $U$-partial order..Inform. Sci. 411 (2017), 39-51. MR 3659313,
Reference: [18] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: Some notes on $U$-partial order..Kybernetika 55 (2019), 518-530. MR 4015996,
Reference: [19] Kesicioğlu, M. N.: On the relationships between the orders induced by uninorms and nullnorms..Fuzzy Sets Syst. 378 (2020), 23-43. MR 4028223,
Reference: [20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Springer Netherlands, 2000. Zbl 1087.20041, MR 1790096
Reference: [21] Li, G., Liu, H. W., Su, Y.: On the conditional distributivity of nullnorms over uninorms..Inform. Sci. 317 (2015), 157-169. MR 3350704,
Reference: [22] Li, W. H., Qin, F.: Conditional distributivity equation for uninorms with continuous underlying operators..IEEE Trans. Fuzzy Syst. 28 (2020), 1664-1678. MR 4251549,
Reference: [23] Liu, Z. Q.: New R-implication generated by $T$-partial order..Comp. Appl. Math. 43 (2024), 425. MR 4802965,
Reference: [24] Liu, Z. Q.: Clifford's order based on non-commutative operations..Iran. J. Fuzzy syst. 21(3) (2024), 77-90. MR 4781308,
Reference: [25] Mayor, G., Torrens, J.: On a class of operators for expert systems..Int. J. Intell. Syst. 8 (1993), 771-778. Zbl 0785.68087,
Reference: [26] Mesiarová-Zemánková, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction..Int. J. Approx. Reason. 83 (2017), 176-192. MR 3614252,
Reference: [27] Mesiarová-Zemánková, A.: Natural partial order induced by a commutative, associative and idempotent function..Inform. Sci. 545 (2021), 499-512. MR 4156092,
Reference: [28] Mesiarová-Zemánková, A.: Representation of non-commutative, idempotent, associative functions by pair-orders..Fuzzy Sets Syst. 475 (2023), 108759. MR 4659799,
Reference: [29] Nanavati, K., Jayaram, B.: Order from non-associative operations..Fuzzy Sets Syst. 467 (2023), 108484. MR 4598454,
Reference: [30] Saminger, B.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Syst. 157 (2006), 1403-1416. Zbl 1099.06004, MR 2226983,
Reference: [31] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120. Zbl 0871.04007, MR 1389951,
Reference: [32] Yager, R. R.: Uninorms in fuzzy systems modeling..Fuzzy Sets Syst. 122 (2001), 167-175. Zbl 0978.93007, MR 1839955,
.

Files

Files Size Format View
Kybernetika_60-2024-6_3.pdf 475.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo