[1] Abuzainab, N., Saad, W.:
A multiclass mean-field game for thwarting misinformation spread in the internet of battlefield things. IEEE Trans. Commun. 66 (2018), 12, 6643-6658.
DOI
[2] Chen, H., Li, Y., Louie, R. H., Vucetic, B.:
Autonomous demand side management based on energy consumption scheduling and instantaneous load billing: An aggregative game approach. IEEE Trans. Smart Grid 5 (2014), 4, 1744-1754.
DOI
[3] Chen, J., Zhu, Q.:
nterdependent strategic security risk management with bounded rationality in the internet of things. IEEE Trans. Inform. Forensics Security {\mi14} (2019), 11, 2958-2971.
DOI
[4] Cheng, Z., Chen, G., Hong, Y.:
Single-leader-multiple-followers stackelberg security game with hypergame framework. IEEE Trans. Inform. Forensics Security 17 (2022), 954-969.
DOI
[5] Hespanha, J. P., Ateskan, Y. S., al., H. Kizilocak et: Deception in non-cooperative games with partial information. In: Proc. 2nd DARPA-JFACC Symposium on Advances in Enterprise Control, Citeseer 2000, pp. 1-9.
[6] Huang, S., Lei, J., Hong, Y.:
A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games. IEEE Trans. Automat. Control 68 (2022), 3, 1753-1759.
DOI |
MR 4557578
[7] Huang, L., Zhu, Q.:
Duplicity games for deception design with an application to insider threat mitigation. IEEE Trans. Inform. Forensics Security 16 (2021), 4843-4856.
DOI
[8] Jelassi, S., Domingo-Enrich, C., Scieur, D., Mensch, A., Bruna, J.: Extragradient with player sampling for faster Nash equilibrium finding. In: Proc. International Conference on Machine Learning 2020.
[9] Jin, R., He, X., Dai, H.:
On the security-privacy tradeoff in collaborative security: A quantitative information flow game perspective. IEEE Trans. Inform. Forensics Security 14 (2019), 12, 3273-3286.
DOI
[10] Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H.:
Subgradient methods and consensus algorithms for solving convex optimization problems. In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190.
DOI
[11] Koshal, J., Nedić, A., Shanbhag, U. V.:
Distributed algorithms for aggregative games on graphs. Oper. Res. 64 (2016), 3, 680-704.
DOI |
MR 3515205
[12] Kovach, N. S., Gibson, A. S., Lamont, G. B.:
Hypergame theory: a model for conflict, misperception, and deception. Game Theory (2015).
MR 3391789
[13] Lei, J., Shanbhag, U. V.:
Asynchronous schemes for stochastic and misspecified potential games and nonconvex optimization. Operations Research 68 (2020), 6, 1742-1766.
DOI |
MR 4217264
[14] Liang, S., Yi, P., Hong, Y., Peng, K.:
Exponentially convergent distributed Nash equilibrium seeking for constrained aggregative games. Autonomous Intell. Systems 2 (2022), 1, 6.
DOI |
MR 4335720
[15] Ma, J., Yang, Z., Chen, Z.:
Distributed Nash equilibrium tracking via the alternating direction method of multipliers. Kybernetika 59 (2023), 4, 612-632.
DOI |
MR 4660381
[16] Meng, Y., Broom, M., Li, A.:
Impact of misinformation in the evolution of collective cooperation on networks. J. Royal Soc. Interface 20 (2023), 206, 20230295.
DOI
[17] Meng, Y., Cornelius, S. P., Liu, Y. Y., Li, A.:
Dynamics of collective cooperation under personalised strategy updates. Nature Commun. 15 (2024), 1, 3125.
DOI
[18] Nedic, A., Ozdaglar, A., Parrilo, P. A.:
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55 (2010), 4, 922-938.
DOI |
MR 2654432
[19] Nguyen, K. C., Alpcan, T., Basar, T.:
Security games with incomplete information. In: 2009 IEEE International Conference on Communications, pp. 1-6.
DOI
[20] Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J.:
Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints. In: 55th IEEE Conference on Decision and Control, IEEE 2016, pp. 6123-6128.
DOI
[21] Paccagnan, D., Gentile, B., Parise, F., Kamgarpour, M., Lygeros, J.:
Nash and wardrop equilibria in aggregative games with coupling constraints. IEEE Trans. Automat. Control 64 (2018), 4, 1373-1388.
DOI |
MR 3936417
[22] Pawlick, J., Colbert, E., Zhu, Q.:
Modeling and analysis of leaky deception using signaling games with evidence. IEEE Trans. Inform. Forensics Security 14 (2018), 7, 1871-1886.
DOI
[23] Sasaki, Y.: Preservation of misperceptions-stability analysis of hypergames. In: Proc. 52nd Annual Meeting of the ISSS-2008, Madison 2008.
[24] Sasaki, Y.:
Generalized Nash equilibrium with stable belief hierarchies in static games with unawareness. Ann. Oper. Res. 256 (2017), 271-284.
DOI |
MR 3697211
[25] Scutari, G., Palomar, D. P., Facchinei, F., Pang, J.-S.:
Convex optimization, game theory, and variational inequality theory. IEEE Signal Process. Magazine 27 (2010), 3, 35-49.
DOI |
MR 2756856
[26] Wang, M., Hipel, K. W., Fraser, N. M.:
Modeling misperceptions in games. Behavioral Sci. 33 (1988), 3, 207-223.
DOI |
MR 0946274
[27] Wang, J., Zhang, J. F., He, X.:
Differentially private distributed algorithms for stochastic aggregative games. Automatica 142 (2022), 110440.
DOI |
MR 4437624
[28] Xu, G., Chen, G., Qi, H., Hong, Y.:
Efficient algorithm for approximating Nash equilibrium of distributed aggregative games. IEEE Trans. Cybernet. 53 (2023), 7, 4375-4387.
DOI
[29] Yilmaz, T., Ulusoy, Ö.:
Misinformation propagation in online social networks: game theoretic and reinforcement learning approaches. IEEE Trans. Comput. Social Systems (2022).
DOI |
MR 4682418
[30] Yu, S., Sun, Q., Yang, Z.:
Recent advances on false information governance. Control Theory Technol. 21 (2023), 1, 110-113.
DOI |
MR 4253447
[31] Zhang, H., Qin, H., Chen, G.:
Bayesian Nash equilibrium seeking for multi-agent incomplete-information aggregative games. Kybernetika (2023), 575-591, 09 2023.
DOI |
MR 4660379
[32] Zhang, T. Y., Ye, D.:
False data injection attacks with complete stealthiness in cyber-physical systems: A self-generated approach. Automatica 120 (2020), 109117.
DOI |
MR 4118793