Previous |  Up |  Next

Article

Title: On Lyapunov stability/instability of equilibria of free damped pendulum with periodically oscillating suspension point (English)
Author: Šremr, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 1
Year: 2025
Pages: 11-45
Summary lang: English
.
Category: math
.
Summary: We discuss Lyapunov stability/instability of both lower and upper equilibria of free damped pendulum with periodically oscillating suspension point. We recall the results of Bogolyubov and Kapitza, provide new effective criteria of stability/instability of the equilibria of pendulum equation, and give the exact and complete proofs. The criteria obtained are formulated in terms of positivity/negativity of Green's functions of the periodic boundary value problems for linearized equations. Furthermore, we show that if both lower and upper equilibria are stable, then the pendulum considered may possess a periodic motion that corresponds to the ``quasistatic solution'' of Bogolyubov as well as to the ``quasistatic balance'' of Kapitza. (English)
Keyword: second-order nonlinear differential equation
Keyword: stability
Keyword: instability
Keyword: Floquet multiplier
Keyword: Lyapunov exponent
Keyword: periodic solution
MSC: 34C15
MSC: 34D08
MSC: 34D20
MSC: 70K25
DOI: 10.21136/AM.2025.0206-24
.
Date available: 2025-03-07T09:24:38Z
Last updated: 2025-03-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152884
.
Reference: [1] Barteneva, I. V., Cabada, A., Ignatyev, A. O.: Maximum and anti-maximum principles for the general operator of second order with variable coefficients.Appl. Math. Comput. 134 (2003), 173-184. Zbl 1037.34014, MR 1928973, 10.1016/S0096-3003(01)00280-6
Reference: [2] Bartuccelli, M. V., Gentile, G., Georgiou, K. V.: On the dynamics of a vertically driven damped planar pendulum.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 457 (2001), 3007-3022. Zbl 1001.70023, MR 1875091, 10.1098/rspa.2001.0841
Reference: [3] Blackburn, J. A., Smith, H. J. T., Grønbech-Jensen, N.: Stability and Hopf bifurcations in an inverted pendulum.Am. J. Phys. 60 (1992), 903-908. Zbl 1219.70056, MR 1181951, 10.1119/1.17011
Reference: [4] Bogatov, E. M., Mukhin, R. R.: The averaging method, a pendulum with a vibrating suspension: N. N. Bogolyubov, A. Stephenson, P. L. Kapitza and others.Izv. VUZ, Appl. Nonlinear Dyn. 25 (2017), 69-87 Russian. 10.18500/0869-6632-2017-25-5-69-87
Reference: [5] Bogolyubov, N. N.: Theory of perturbations in nonlinear mechanics.Collection of Works 14 Institute of Construction Mechanics, Ukrainian Academy of Sciences, Kiev (1950), 9-34 Russian.
Reference: [6] Cabada, A., Cid, J. Á., López-Somoza, L.: Maximum Principles for the Hill's Equation.Academic Press, London (2018). Zbl 1393.34003, MR 3751358, 10.1016/C2015-0-00688-8
Reference: [7] Dancer, E. N., Ortega, R.: The index of Lyapunov stable fixed points in two dimensions.J. Dyn. Differ. Equations 6 (1994), 631-637. Zbl 0811.34018, MR 1303278, 10.1007/BF02218851
Reference: [8] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions.Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). Zbl 1330.34009, MR 2225284, 10.1016/s0076-5392(06)x8055-4
Reference: [9] Demidovich, B. P.: Lectures on Mathematical Stability Theory.Nauka, Moscow (1967), Russian. Zbl 0155.41601, MR 0226126
Reference: [10] Hakl, R., Torres, P. J.: Maximum and antimaximum principles for a second order differential operator with variable coefficients of indefinite sign.Appl. Math. Comput. 217 (2011), 7599-7611. Zbl 1235.34064, MR 2799774, 10.1016/j.amc.2011.02.053
Reference: [11] Hartman, P.: Ordinary Differential Equations.John Wiley & Sons, New York (1964). Zbl 0125.32102, MR 0171038
Reference: [12] Holubová, G.: Optimal conditions for the maximum principle for second-order periodic problems.Electron. J. Differential Equations, Special Issue 2023 (2023), 151-160. MR 4803584, 10.58997/ejde.sp.02.h2
Reference: [13] Kapitza, P. L.: Dynamic stability of the pendulum with vibrating suspension point.Sov. Phys. JETP 21 (1951), 588-597 Russian.
Reference: [14] Kapitza, P. L.: Pendulum with an oscillating pivot.Usp. fiz. nauk 44 (1951), 7-20 Russian.
Reference: [15] Komlenko, J. V., Tonkov, E. L.: A periodic boundary value problem for an ordinary second-order differential equation.Dokl. Akad. Nauk SSSR 179 (1968), 17-19 Russian. Zbl 0172.11604, MR 0226119
Reference: [16] Leonov, G. A.: On stability in the first approximation.J. Appl. Math. Mech. 62 (1998), 511-517. MR 1680316, 10.1016/S0021-8928(98)00067-7
Reference: [17] Leonov, G. A.: First-approximation instability criteria for non-stationary linearizations.J. Appl. Math. Mech. 68 (2004), 827-838. Zbl 1095.34031, MR 2125024, 10.1016/j.jappmathmech.2004.11.004
Reference: [18] Leonov, G. A., Kuznetsov, N. V.: Time-varying linearization and the Perron effects.Int. J. Bifurcation Chaos Appl. Sci. Eng. 17 (2007), 1079-1107. Zbl 1142.34033, MR 2329516, 10.1142/S0218127407017732
Reference: [19] Lomtatidze, A.: Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations.Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. Zbl 1352.34033, MR 3472904
Reference: [20] Sansone, G.: Ordinary differential equations. Vol. I.Izd. Inostrannoj Literatury, Moscow (1953), Russian. MR 0064221
Reference: [21] Seyranian, A. A., Seyranian, A. P.: The stability of an inverted pendulum with a vibrating suspension point.J. Appl. Math. Mech. 70 (2006), 754-761. Zbl 1126.70361, MR 2319534, 10.1016/j.jappmathmech.2006.11.009
Reference: [22] Tonkov, E. L.: The second order periodic equation.Dokl. Akad. Nauk SSSR 184 (1969), 296-299 Russian. Zbl 0184.12102, MR 0237880
Reference: [23] Torres, P. J.: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem.J. Differ. Equations 190 (2003), 643-662. Zbl 1032.34040, MR 1970045, 10.1016/S0022-0396(02)00152-3
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo