Previous |  Up |  Next

Article

Title: On multipoint constraints in FETI methods (English)
Author: Hrušková, Pavla
Author: Dostál, Zdeněk
Author: Vlach, Oldřich
Author: Vodstrčil, Petr
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 70
Issue: 1
Year: 2025
Pages: 47-64
Summary lang: English
.
Category: math
.
Summary: FETI (finite element tearing and interconnecting) based domain decomposition methods are well-established massively parallel methods for solving huge linear systems arising from discretizing partial differential equations. The first steps of FETI decompose the domain into nonoverlapping subdomains, discretize the subdomains using matching grids, and interconnect the adjacent variables by multipoint constraints. However, the multipoint constraints enforcing identification of the corners' variables do not have a unique representation and their proper choice and modification can improve the performance of FETI. Here, we briefly review the main options, including orthogonal, fully redundant, or localized constraints, and use the basic linear algebra and spectral graph theory to examine the quantitative effect of their choice on the effective control of the feasibility error and rate of convergence of FETI. (English)
Keyword: domain decomposition
Keyword: multipoint constraint
Keyword: redundant multiplier
MSC: 65K15
MSC: 65Y05
MSC: 90C06
DOI: 10.21136/AM.2025.0114-24
.
Date available: 2025-03-07T09:25:16Z
Last updated: 2025-03-10
Stable URL: http://hdl.handle.net/10338.dmlcz/152885
.
Reference: [1] Bavestrello, H., Avery, P., Farhat, C.: Incorporation of linear multipoint constraints in domain-decomposition-based iterative solvers. II. Blending FETI-DP and mortar methods and assembling floating substructures.Comput. Methods Appl. Mech. Eng. 196 (2007), 1347-1368. Zbl 1173.74399, MR 2277021, 10.1016/j.cma.2006.03.024
Reference: [2] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application.Pure and Applied Mathematics (Academic Press) 87. Academic Press, New York (1980). Zbl 1540.05001, MR 0572262
Reference: [3] Dostál, Z., Brzobohatý, T., Horák, D., Kružík, J., Vlach, O.: Scalable hybrid TFETI-DP methods for large boundary variational inequalities.Domain Decomposition Methods in Science and Engineering XXVI Lecture Notes in Computational Science and Engineering 145. Springer, Cham (2022), 29-40. Zbl 07936273, MR 4703833, 10.1007/978-3-030-95025-5_3
Reference: [4] Dostál, Z., Brzobohatý, T., Vlach, O., Meca, O., Sadowská, M.: Hybrid TFETI domain decomposition with the clusters joined by faces' rigid modes for solving huge 3D elastic problems.Comput. Mech. 71 (2023), 333-347. Zbl 1514.74084, MR 4539373, 10.1007/s00466-022-02242-2
Reference: [5] Dostál, Z., Brzobohatý, T., Vlach, O., Říha, L.: On the spectrum of Schur complements of 2D elastic clusters joined by rigid edge modes and hybrid domain decomposition.Numer. Math. 152 (2022), 41-66. Zbl 1496.65231, MR 4474055, 10.1007/s00211-022-01307-x
Reference: [6] Dostál, Z., Horák, D., Kučera, R.: Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE.Commun. Numer. Methods Eng. 22 (2006), 1155-1162. Zbl 1107.65104, MR 2282408, 10.1002/cnm.881
Reference: [7] Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V.: Scalable Algorithms for Contact Problems.Advances in Mechanics and Mathematics 36. Birkhäuser, Cham (2023). Zbl 07746982, MR 4807229, 10.1007/978-3-031-33580-8
Reference: [8] Farhat, C., Lacour, C., Rixen, D.: Incorporation of linear multipoint constraints in substructure based iterative solvers. I: A numerically scalable algorithm.Int. J. Numer. Methods Eng. 43 (1998), 997-1016. Zbl 0944.74071, MR 1654667, 10.1002/(SICI)1097-0207(19981130)43:6<997::AID-NME455>3.0.CO;2-B
Reference: [9] Farhat, C., Mandel, J., Roux, F.-X.: Optimal convergence properties of the FETI domain decomposition method.Comput. Methods Appl. Mech. Eng. 115 (1994), 365-385. MR 1285024, 10.1016/0045-7825(94)90068-X
Reference: [10] Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm.Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. Zbl 0758.65075, MR 3618550, 10.1002/nme.1620320604
Reference: [11] Farhat, C., Roux, F.-X.: An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems.SIAM J. Sci. Stat. Comput. 13 (1992), 379-396. Zbl 0746.65086, MR 1145192, 10.1137/0913020
Reference: [12] Felippa, C. A.: Will the force method come back?.J. Appl. Mech. 54 (1987), 726-728. Zbl 0619.73090, 10.1115/1.3173098
Reference: [13] Felippa, C. A., Park, K. C.: Staggered transient analysis procedures for coupled mechanical systems: Formulation.Comput. Methods Appl. Mech. Eng. 24 (1980), 61-111. Zbl 0453.73091, 10.1016/0045-7825(80)90040-7
Reference: [14] Felippa, C. A., Park, K. C.: A direct flexibility method.Comput. Methods Appl. Mech. Eng. 149 (1997), 319-337. Zbl 0918.73129, MR 1486246, 10.1016/S0045-7825(97)00048-0
Reference: [15] Fragakis, Y., Papadrakakis, M.: The mosaic of high performance domain decomposition methods for structural mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods.Comput. Methods Appl. Mech. Eng. 192 (2003), 3799-3830. Zbl 1054.74069, 10.1016/S0045-7825(03)00374-8
Reference: [16] Golub, G. H., Loan, C. F. Van: Matrix Computations.Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013). Zbl 1268.65037, MR 3024913
Reference: [17] Kaneko, I., Lawo, M., Thierauf, G.: On computational procedures for the force method.Int. J. Numer. Methods Eng. 18 (1982), 1469-1495. Zbl 0542.73107, MR 0679230, 10.1002/nme.1620181004
Reference: [18] Klawonn, A., Widlund, O. B.: FETI and Neumann-Neumann iterative substructuring methods: Connections and new results.Commun. Pure Appl. Math. 54 (2001), 57-90. Zbl 1023.65120, MR 1787107, 10.1002/1097-0312(200101)54:1<57::AID-CPA3>3.0.CO;2-D
Reference: [19] Miyamura, T., Yoshimura, S.: Balancing domain decomposition method for large-scale analysis of an assembly structure having millions of multipoint constraints.Comput. Methods Appl. Mech. Eng. 405 (2023), Article ID 115846, 29 pages. Zbl 1539.74461, MR 4530714, 10.1016/j.cma.2022.115846
Reference: [20] Mohar, B.: The Laplacian spectrum of graphs.Graph Theory, Combinatorics, and Applications. Vol. 2 John Wiley & Sons, New York (1991), 871-898. Zbl 0840.05059, MR 1170831
Reference: [21] Park, K. C., Felippa, C. A.: A variational principle for the formulation of partitioned structural systems.Int. J. Numer. Methods Eng. 47 (2000), 395-418. Zbl 0988.74032, MR 1744295, 10.1002/(SICI)1097-0207(20000110/30)47:1/3<395::AID-NME777>3.0.CO;2-9
Reference: [22] Park, K. C., Felippa, C. A., Gumaste, U. A.: A localized version of the method of Lagrange multipliers and its applications.Comput. Mech. 24 (2000), 476-490. Zbl 0961.74077, 10.1007/s004660050007
Reference: [23] Pechstein, C.: Finite and boundary element tearing and interconnecting solvers for multiscale problems.Lecture Notes in Computational Science and Engineering 90. Springer, Berlin (2013). Zbl 1272.65100, MR 3013465, 10.1007/978-3-642-23588-7
Reference: [24] Rixen, D. J., Farhat, C.: A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems.Int. J. Numer. Methods Eng. 44 (1999), 489-516. Zbl 0940.74067, MR 1670647, 10.1002/(SICI)1097-0207(19990210)44:4<489::AID-NME514>3.0.CO;2-Z
Reference: [25] Toselli, A., Widlund, O.: Domain Decomposition Methods -- Algorithms and Theory.Springer Series in Computational Mathematics 34. Springer, Berlin (2005). Zbl 1069.65138, MR 2104179, 10.1007/b137868
Reference: [26] Trefethen, L. N., III, D. Bau: Numerical Linear Algebra.SIAM, Philadelphia (1997). Zbl 0874.65013, MR 1444820, 10.1137/1.9780898719574
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo