Previous |  Up |  Next

Article

Title: On the behaviour of the solutions of a $k$-order cyclic-type system of max difference equations (English)
Author: Stefanidou, Gesthimani
Author: Papaschinopoulos, Garyfalos
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 1
Year: 2025
Pages: 297-325
Summary lang: English
.
Category: math
.
Summary: We investigate the behaviour of the solutions of a $k$-dimensional cyclic system of difference equations with maximum. More precisely, we study the existence and the number of the equilibria in the case when $k$ is an odd or an even positive integer, but also for the various values of the exponents of the terms of the difference equations of this system. In addition, we find invariant intervals for our system and we invistegate the convergence of the solutions to the unique positive equilibrium. Finally, we study the asymptotic behavior of the positive solutions of the system in the case, where $k=2$ and $k=4$. (English)
Keyword: difference equation with maximum
Keyword: cyclic system
Keyword: equilibrium
Keyword: asymptotic behavior
MSC: 39A10
DOI: 10.21136/CMJ.2024.0203-23
.
Date available: 2025-03-11T16:04:26Z
Last updated: 2025-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/152910
.
Reference: [1] Berenhaut, K. S., Foley, J. D., Stević, S.: Boundedness character of positive solutions of a max difference equation.J. Difference Equ. Appl. 12 (2006), 1193-1199. Zbl 1116.39001, MR 2277649, 10.1080/10236190600949766
Reference: [2] Berenhaut, K. S., Stević, S.: The behaviour of the positive solutions of the difference equation $x_n=A+(x_{n-2}/x_{n-1})^p$.J. Difference Equ. Appl. 12 (2006), 909-918. Zbl 1111.39003, MR 2262329, 10.1080/10236190600836377
Reference: [3] Berg, L., Stević, S.: On the asymptotics of the difference equation $y_n(1+y_{n-1}\cdots y_{n-k+1})=y_{n-k}$.J. Difference Equ. Appl. 17 (2011), 577-586. Zbl 1220.39011, MR 2783369, 10.1080/10236190903203820
Reference: [4] Briden, W. J., Grove, E. A., Ladas, G., Kent, C. M.: Eventually periodic solutions of $x_{n+1}=\max\{1/x_n,A_n/x_{n-1}\}$.Commun. Appl. Nonlinear Anal. 6 (1999), 31-43. Zbl 1108.39300, MR 1719535
Reference: [5] Elsayed, E. M., Stević, S.: On the max-type equation $x_{n+1}=\max\{A/{x_n},x_{n-2}\}$.Nonlinear Anal., Theory Methods Appl., Ser. A 71 (2009), 910-922. Zbl 1169.39003, MR 2527512, 10.1016/j.na.2008.11.016
Reference: [6] Feuer, J.: On the eventual periodicity of $x_{n+1}=\max\{1/x_n,A_n/x_{n-1}\}$ with a period-four parameter.J. Difference Equ. Appl. 12 (2006), 467-486. Zbl 1095.39016, MR 2241388, 10.1080/10236190600574002
Reference: [7] Fotiades, N., Papaschinopoulos, G.: On a system of difference equations with maximum.Appl. Math. Comput. 221 (2013), 684-690. Zbl 1329.39019, MR 3091963, 10.1016/j.amc.2013.07.014
Reference: [8] Grove, E. A., Kent, C., Ladas, G., Radin, M. A.: On $x_{n+1}= \max\{1/x_n,A_n/x_{n-1}\}$ with a period 3 parameter.Topics in Functional Differential and Difference Equations Fields Institute Communications 29. AMS, Providence (2001), 161-180. Zbl 0980.39012, MR 1821780
Reference: [9] Iričanin, B., Stević, S.: Some systems of nonlinear difference equations of higher order with periodic solutions.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 13 (2006), 499-507. Zbl 1098.39003, MR 2220850
Reference: [10] Iričanin, B., Stević, S.: Global attractivity of the max-type difference equation $x_n=\max\{c, x^p_{n-1}/\prod\nolimits_{j=2}^kx_{n-j}^{p_j}\}$.Util. Math. 91 (2013), 301-304. Zbl 1294.39004, MR 3097907
Reference: [11] Kent, C. M., Radin, M. A.: On the boundedness nature of positive solutions of the difference equation $x_{n+1}=\max\{A_n/x_n,B_n/x_{n-1}\}$ with periodic parameters.Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms Suppl. (2003), 11-15. MR 2015782
Reference: [12] Kulenović, M. R. S., Ladas, G.: Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures.Chapman & Hall/CRC, Boca Raton (2002). Zbl 0981.39011, MR 1935074, 10.1201/9781420035384
Reference: [13] Kurzweil, J., Paraschinopoulos, G.: Structural stability of linear discrete systems via the exponential dichotomy.Czech. Math. J. 38 (1988), 280-284. Zbl 0661.93060, MR 946297, 10.21136/CMJ.1988.102223
Reference: [14] Kurzweil, J., Paraschinopoulos, G.: Topological equivalence and structural stability for linear difference equations.J. Differ. Equations 89 (1991), 89-94. Zbl 0753.34040, MR 1088336, 10.1016/0022-0396(91)90112-M
Reference: [15] Liu, W., Stević, S.: Global attractivity of a family of nonautonomous max-type difference equations.Appl. Math. Comput. 218 (2012), 6297-6303. Zbl 1246.39009, MR 2879111, 10.1016/j.amc.2011.11.108
Reference: [16] Liu, W., Yang, X., Stević, S.: On a class of nonautonomous max-type difference equations.Abstr. Appl. Anal. 2011 (2011), Article ID 436852, 15 pages. Zbl 1223.39007, MR 2822103, 10.1155/2011/436852
Reference: [17] Mishev, D. P., Patula, W. T., Voulov, H. D.: A reciprocal difference equation with maximum.Comput. Math. Appl. 43 (2002), 1021-1026. Zbl 1050.39015, MR 1892482, 10.1016/S0898-1221(02)80010-4
Reference: [18] Mishev, D. P., Patula, W. T., Voulov, H. D.: Periodic coefficients in a reciprocal difference equation with maximum.Panam. Math. J. 13 (2003), 43-57. Zbl 1050.39016, MR 1988235
Reference: [19] Myshkis, A. D.: On certain problems in the theory of differential equations with deviating argument.Russ. Math. Surv. 32 (1977), 181-213. Zbl 0378.34052, MR 0492443, 10.1070/RM1977v032n02ABEH001623
Reference: [20] Papaschinopoulos, G., Hatzifilippidis, V.: On a max difference equation.J. Math. Anal. Appl. 258 (2001), 258-268. Zbl 0986.39005, MR 1828104, 10.1006/jmaa.2000.7377
Reference: [21] Papaschinopoulos, G., Schinas, J., Hatzifilippidis, V.: Global behavior of the solutions of a Max-equation and a system of two Max-equations.J. Comput. Anal. Appl. 5 (2003), 237-254. Zbl 1034.39008, MR 1980394, 10.1023/A:1022833112788
Reference: [22] Papaschinopoulos, G., Schinas, C. J., Stefanidou, G.: On a $k$-order system of Lyness-type difference equations.Adv. Difference Equ. 2007 (2007), Article ID 31272, 13 pages. Zbl 1154.39013, MR 2322487, 10.1155/2007/31272
Reference: [23] Papaschinopoulos, G., Schinas, C. J., Stefanidou, G.: On the nonautonomous difference equation $x_{n+1}=A_n+x_{n-1}^p/x_n^q$.Appl. Math. Comput. 217 (2011), 5573-5580. Zbl 1221.39013, MR 2770176, 10.1016/j.amc.2010.12.031
Reference: [24] Patula, W. T., Voulov, H. D.: On a max type recurrence relation with periodic coefficients.J. Difference Equ. Appl. 10 (2004), 329-338. Zbl 1050.39017, MR 2049682, 10.1080/10236190410001659741
Reference: [25] Popov, E. P.: Theory of Automatic Control Systems.Nauka, Moscow (1966), Russian. Zbl 0135.31203, MR 0401232
Reference: [26] Stefanidou, G., Papaschinopoulos, G.: Behavior of the positive solutions of fuzzy max- difference equations.Adv. Difference Equ. 2005 (2005), 153-172. Zbl 1109.39012, MR 2197130, 10.1155/ADE.2005.153
Reference: [27] Stefanidou, G., Papaschinopoulos, G.: The periodic nature of the positive solutions of a nonlinear fuzzy max-difference equation.Inf. Sci. 176 (2006), 3694-3710. Zbl 1122.39008, MR 2270965, 10.1016/j.ins.2006.02.006
Reference: [28] Stefanidou, G., Papaschinopoulos, G.: On a generalized cyclic-type system of difference equations with maximum.Electron. J. Qual. Theory Differ. Equ. 2022 (2022), Article ID 65, 20 pages. Zbl 07670553, MR 4539740, 10.14232/ejqtde.2022.1.65
Reference: [29] Stefanidou, G., Papaschinopoulos, G., Schinas, C. J.: On a system of max-difference equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 14 (2007), 885-903. Zbl 1142.39012, MR 2369919
Reference: [30] Stević, S.: A global convergence results with applications to periodic solutions.Indian J. Pure Appl. Math. 33 (2002), 45-53. Zbl 1002.39004, MR 1879782
Reference: [31] Stević, S.: Asymptotic behaviour of a nonlinear difference equation.Indian J. Pure Appl. Math. 34 (2003), 1681-1687. Zbl 1049.39012, MR 2030114
Reference: [32] Stević, S.: On the recursive sequence $x_{n+1}= \alpha_n+(x_{n-1}/x_n)$. II.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 10 (2003), 911-916. Zbl 1051.39012, MR 2008754
Reference: [33] Stević, S.: On the recursive sequence $x_{n+1}= A/\prod\nolimits_{i=0}^k x_{n-i}+1/\prod\nolimits_{j=k+2}^{2(k+1)}x_{n-j}$.Taiwanese J. Math. 7 (2003), 249-259. Zbl 1054.39008, MR 1978014, 10.11650/twjm/1500575062
Reference: [34] Stević, S.: On the recursive sequence $x_{n+1}=\max\{c,{x^p_n}/{x_{n-1}^p}\}$.Appl. Math. Lett. 21 (2008), 791-796. Zbl 1152.39012, MR 2436166, 10.1016/j.aml.2007.08.008
Reference: [35] Stević, S.: Boundedness character of a class of difference equations.Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 839-848. Zbl 1162.39011, MR 2468424, 10.1016/j.na.2008.01.014
Reference: [36] Stević, S.: Global stability of a difference equation with maximum.Appl. Math. Comput. 210 (2009), 525-529. Zbl 1167.39007, MR 2509928, 10.1016/j.amc.2009.01.050
Reference: [37] Stević, S.: Global stability of a max-type difference equation.Appl. Math. Comput. 216 (2010), 354-356. Zbl 1193.39009, MR 2596166, 10.1016/j.amc.2010.01.020
Reference: [38] Stević, S.: On a generalized max-type difference equation from automatic control theory.Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 1841-1849. Zbl 1194.39007, MR 2577582, 10.1016/j.na.2009.09.025
Reference: [39] Stević, S.: Periodicity of max difference equations.Util. Math. 83 (2010), 69-71. Zbl 1236.39018, MR 2742275
Reference: [40] Stević, S.: On a nonlinear generalized max-type difference equation.J. Math. Anal. Appl. 376 (2011), 317-328. Zbl 1208.39014, MR 2745409, 10.1016/j.jmaa.2010.11.041
Reference: [41] Stević, S.: Periodicity of a class of nonautonomous max-type difference equations.Appl. Math. Comput. 217 (2011), 9562-9566. Zbl 1225.39018, MR 2811231, 10.1016/j.amc.2011.04.022
Reference: [42] Stević, S.: On some periodic systems of max-type difference equations.Appl. Math. Comput. 218 (2012), 11483-11487. Zbl 1280.39012, MR 2943993, 10.1016/j.amc.2012.04.077
Reference: [43] Stević, S.: Solutions of a max-type system of difference equations.Appl. Math. Comput. 218 (2012), 9825-9830. Zbl 1252.39009, MR 2916163, 10.1016/j.amc.2012.03.057
Reference: [44] Stević, S.: On a cyclic system of difference equations.J. Difference Equ. Appl. 20 (2014), 733-743. Zbl 1298.39012, MR 3210312, 10.1080/10236198.2013.814648
Reference: [45] Stević, S.: Boundedness and persistence of some cyclic-type systems of difference equations.Appl. Math. Lett. 56 (2016), 78-85. Zbl 1334.39036, MR 3455742, 10.1016/j.aml.2015.12.007
Reference: [46] Stević, S.: On periodic solutions of a class of $k$-dimensional systems of max-type difference equations.Adv. Difference Equ. 2016 (2016), Article ID 251, 10 pages. Zbl 1419.39032, MR 3552982, 10.1186/s13662-016-0977-1
Reference: [47] Stević, S., Diblík, J., Iričanin, B., Šmarda, Z.: On a third-order system of difference equations with variable coefficients.Abstr. Appl. Anal. 2012 (2012), Article ID 508523, 22 pages. Zbl 1242.39011, MR 2926886, 10.1155/2012/508523
Reference: [48] Stević, T., Iričanin, B.: Long-term behavior of a cyclic max-type system of difference equations.Electron. J. Differ. Equ. 2015 (2015), Article ID 234, 12 pages. Zbl 1329.39015, MR 3414088
Reference: [49] Stević, S., Iričanin, B., Kosmala, W., Šmarda, Z.: Note on a solution form to the cyclic bilinear system of difference equations.Appl. Math. Lett. 111 (2021), Article ID 106690, 8 pages. Zbl 1448.39008, MR 4142097, 10.1016/j.aml.2020.106690
Reference: [50] Stević, S., Iričanin, B., Šmarda, Z.: On a product-type system of difference equations of second order solvable in closed form.J. Inequal. Appl. 2015 (2015), Article ID 327, 15 pages \99999DOI99999 10.1186/S13660-015-0835-9 . Zbl 1333.39006, MR 3407680
Reference: [51] Stoikidis, A., Papaschinopoulos, G.: Study of a cyclic system of difference equations with maximum.Electron. J. Qual. Theory Differ. Equ. 2020 (2020), Article ID 39, 14 pages. Zbl 1463.39038, MR 4118154, 10.14232/ejqtde.2020.1.39
Reference: [52] Voulov, H. D.: On the periodic character of some difference equations.J. Difference Equ. Appl. 8 (2002), 799-810. Zbl 1032.39004, MR 1919885, 10.1080/1023619021000000780
Reference: [53] Voulov, H. D.: Periodic solutions to a difference equation with maximum.Proc. Am. Math. Soc. 131 (2003), 2155-2160. Zbl 1019.39005, MR 1963762, 10.1090/S0002-9939-02-06890-9
Reference: [54] Voulov, H. D.: On the periodic nature of the solutions of the reciprocal difference equation with maximum.J. Math. Anal. Appl. 296 (2004), 32-43. Zbl 1053.39023, MR 2070491, 10.1016/j.jmaa.2004.02.054
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo