[6] Billingsley, P.:
Probability and Measure. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1995).
MR 1324786 |
Zbl 0822.60002
[8] Chronopoulou, A., Tudor, C. A., Viens, F. G.:
Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Commun. Stoch. Anal. 5 (2011), 161-185.
DOI 10.31390/cosa.5.1.10 |
MR 2808541 |
Zbl 1331.62098
[20] Garrido-Atienza, M. J., Lu, K., Schmalfuss, B.:
Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete Contin. Dyn. Syst., Ser. B 14 (2010), 473-493.
DOI 10.3934/dcdsb.2010.14.473 |
MR 2660869 |
Zbl 1200.37075
[23] Kerchev, G., Nourdin, I., Saksman, E., Viitasaari, L.:
Local times and sample path properties of the Rosenblatt process. Stochastic Processes Appl. 131 (2021), 498-522.
DOI 10.1016/j.spa.2020.09.018 |
MR 4165649
[24] Kiška, B.: Variation of Rosenblatt Process: Master's Thesis. Charles University, Faculty of Mathematics and Physics, Prague (2022).
[25] Kuehn, C., Lux, K., Neamţu, A.:
Warning signs for non-Markovian bifurcations: Colour blindness and scaling laws. Proc. R. Soc. A 478 (2022), Article ID 20210740, 12 pages.
DOI 10.1098/rspa.2021.0740 |
MR 4409442
[28] Maslowski, B., Schmalfuss, B.:
Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl. 22 (2004), 1577-1607.
DOI 10.1081/SAP-200029498 |
MR 2095071 |
Zbl 1062.60060
[29] Mori, T., Oodaira, H.:
The law of the iterated logarithm for self-similar processes represented by multiple Wiener integrals. Probab. Theory Relat. Fields 71 (1986), 367-391.
DOI 10.1007/BF01000212 |
MR 0824710 |
Zbl 0562.60033
[33] Rosenblatt, M.:
Independence and dependence. Proceedings of the 4th Berkeley Symposium Mathemacal Statistics and Probability University of California Press, Berkeley (1961), 431-443.
MR 0133863 |
Zbl 0105.11802
[45] Veillette, M. S., Taqqu, M. S.:
Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli 19 (2013), 982-1005 \99999DOI99999 10.3150/12-BEJ421 \hyphenation{Bohdan}.
DOI 10.3150/12-BEJ421 |
MR 3079303 |
Zbl 1273.60020