Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Kurzweil-Stieltjes integral; Hölder function; counterexample
Summary:
For any $\alpha , \beta >0$ with $\alpha +\beta <1$ we provide a simple construction of an $\alpha $-Hölde function $f\colon [0,1]\to {\mathbb R}$ and a $\beta $-Hölder function $g\colon [0,1]\to {\mathbb R}$ such that the integral $\int _0^1 f {\rm d} g$ fails to exist even in the Kurzweil-Stieltjes sense.
References:
[1] Dudley, R. M., Norvaiša, R.: Differentiability of Six Operators on Nonsmooth Functions and $p$-Variation. Lecture Notes in Mathematics 1703. Springer, Berlin (1999). DOI 10.1007/BFb0100744 | MR 1705318 | Zbl 0973.46033
[2] Dudley, R. M., Norvaiša, R.: Concrete Functional Calculus. Springer Monographs in Mathematics. Springer, New York (2011). DOI 10.1007/978-1-4419-6950-7 | MR 2732563 | Zbl 1218.46003
[3] Hardy, G. H.: Weierstrass's non-differentiable function. Trans. Am. Math. Soc. 17 (1916), 301-325 \99999JFM99999 46.0401.03. DOI 10.1090/S0002-9947-1916-1501044-1 | MR 1501044
[4] Lacina, F.: Stochastic Integrals: Master's Thesis. Charles University, Prague (2016), Available at http://hdl.handle.net/20.500.11956/75283\kern0pt
[5] Leśniewicz, R., Orlicz, W.: On generalized variations. II. Stud. Math. 45 (1973), 71-109. DOI 10.4064/sm-45-1-71-109 | MR 346509 | Zbl 0218.26007
[6] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral: Theory and Applications. Series in Real Analysis 15. World Scientific, Hackensack (2019). DOI 10.1142/9432 | MR 3839599 | Zbl 1437.28001
[7] Young, L. C.: An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), 251-282. DOI 10.1007/BF02401743 | MR 1555421 | Zbl 0016.10404
[8] Zygmund, A.: Trigonometric Series. Volumes I and II Combined. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9781316036587 | MR 1963498 | Zbl 1084.42003
Partner of
EuDML logo