Previous |  Up |  Next

Article

Keywords:
discounted Markov decision processes; trapezoidal fuzzy costs; max-order; average ranking
Summary:
This article concerns a class of discounted Markov decision processes on Borel spaces where, in contrast with the classical framework, the cost function $\widetilde C$ is a fuzzy function of a trapezoidal type, which is determined from a classical cost function $C$ by applying an affine transformation with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model with a cost function $C$ has an optimal stationary policy $f_{o}$ with the optimal cost $V_{o}$, it is shown that such a policy is also optimal for the fuzzy model with a cost function $\widetilde C$, and that the optimal fuzzy value $\tilde{V}_{o}$ is obtained from $V_{o}$ via the same transformation used to go from $C$ to $\widetilde C$. And these results are obtained with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the classical linear-quadratic model without restrictions is presented.
References:
[1] Aubin, J. P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston 2009. MR 2458436
[2] Bertsekas, D.: Dynamic programming and optimal control: Volume I. Athena Sci. (2012). MR 3642732
[3] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Finite-horizon and infinite-horizon Markov decision processes with trapezoidal fuzzy discounted rewards. Commun. Comput. Inf. Sci., Springer, Cham 1623 (2022), 171-192. MR 4487360
[4] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Markov decision processes on finite spaces with fuzzy total reward. Kybernetika 58 (2022), 2, 180-199. DOI  | MR 4467492
[5] Cruz-Suárez, H., Montes-de-Oca, R.: An envelope theorem and some applications to discounted Markov decision processes. Math. Oper. Res. 67 (2008), 299-321. DOI  | MR 2390061
[6] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I.: An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1,160-178. DOI  | MR 4567846
[7] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R.: Deterministic discounted Markov decision processes with fuzzy rewards/costs. Fuzzy Inf. Engrg. 15 (2023), 3, 274-290. DOI 
[8] Andrés-Sánchez, J. de: A systematic review of the interactions of fuzzy set theory and option pricing. Expert Syst. Appl. 223 (2023), 119868. DOI 
[9] Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore 1994. MR 1337027
[10] Figueroa-García, J. C., Hernández, G., Franco, C.: A review on history, trends and perspectives of fuzzy linear programming. Oper. Res. Perspect. 9 (2022), 100247. DOI  | MR 4471476
[11] Furukawa, N.: Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems. Optimization 40 (1997), 171-192. DOI  | MR 1620380
[12] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York, 1996. MR 1363487 | Zbl 0840.93001
[13] Kambalimath, S., Deka, P. C.: A basic review of fuzzy logic applications in hydrology and water resources. Appl. Water Sci. 10 (2020), 8, 1-14. DOI 
[14] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov-type fuzzy decision processes with a discounted reward on a closed interval. Eur. J. Oper. Res. 92 (1996), 3, 649-662. DOI  | MR 1328908
[15] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov decision processes with fuzzy rewards. J. Nonlinear Convex Anal. 4 (1996), 1, 105-116. MR 1986973
[16] Kurano, M., Hosaka, M., Song, J., Huang, Y.: Controlled Markov set-chains with discounting. J. Appl. Prob. 35 (1998), 3, 293-302. DOI  | MR 1641785
[17] López-Díaz, M., Ralescu, D. A.: Tools for fuzzy random variables: embeddings and measurabilities. Comput. Statist. Data Anal. 51 (2006), 109-114. DOI  | MR 2297590
[18] Puri, M. L., Ralescu, D. A.: Fuzzy random variable. J. Math. Anal. Appl. 114 (1986), 402-422. MR 0833596
[19] Rani, D., Gulati, T. R.: A new approach to solve unbalanced transportation problems in imprecise environment. J. Transp. Secur. 7 (2014), 3, 277-287. DOI 
[20] Rani, D., Gulati, T. R., Kumar, A.: A method for unbalanced transportation problems in fuzzy environment. Sadhana 39 (2014), 3, 573-581. DOI  | MR 3225832
[21] Rezvani, S., Molani, M.: Representation of trapezoidal fuzzy numbers with shape function. Ann. Fuzzy Math. Inform. 8 (2014), 89-112. MR 3214770
[22] Semmouri, A., Jourhmane, M., Belhallaj, Z.: Discounted Markov decision processes with fuzzy costs. Ann. Oper. Res. 295 (2020), 769-786. DOI  | MR 4181708
[23] Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics. Wiley, New Jersey 2020.
[24] Zadeh, L.: Fuzzy sets. Inform. Control 8 (1965), 338-353. DOI  | MR 0219427 | Zbl 0942.00007
[25] Zhou, W., Lou, D., Xu, Z.: Review of fuzzy investment research considering modelling environment and element fusion. Int. J. Syst. Sci. 53 (2022), 9, 1958-1982. DOI  | MR 4446001
Partner of
EuDML logo