[1] Aubin, J. P., Frankowska, H.:
Set-Valued Analysis. Birkhäuser, Boston 2009.
MR 2458436
[2] Bertsekas, D.:
Dynamic programming and optimal control: Volume I. Athena Sci. (2012).
MR 3642732
[3] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.:
Finite-horizon and infinite-horizon Markov decision processes with trapezoidal fuzzy discounted rewards. Commun. Comput. Inf. Sci., Springer, Cham 1623 (2022), 171-192.
MR 4487360
[4] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.:
Markov decision processes on finite spaces with fuzzy total reward. Kybernetika 58 (2022), 2, 180-199.
DOI |
MR 4467492
[5] Cruz-Suárez, H., Montes-de-Oca, R.:
An envelope theorem and some applications to discounted Markov decision processes. Math. Oper. Res. 67 (2008), 299-321.
DOI |
MR 2390061
[6] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I.:
An extended version of average Markov decision processes on discrete spaces under fuzzy environment. Kybernetika 59 (2023), 1,160-178.
DOI |
MR 4567846
[7] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R.:
Deterministic discounted Markov decision processes with fuzzy rewards/costs. Fuzzy Inf. Engrg. 15 (2023), 3, 274-290.
DOI
[8] Andrés-Sánchez, J. de:
A systematic review of the interactions of fuzzy set theory and option pricing. Expert Syst. Appl. 223 (2023), 119868.
DOI
[9] Diamond, P., Kloeden, P.:
Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore 1994.
MR 1337027
[10] Figueroa-García, J. C., Hernández, G., Franco, C.:
A review on history, trends and perspectives of fuzzy linear programming. Oper. Res. Perspect. 9 (2022), 100247.
DOI |
MR 4471476
[11] Furukawa, N.:
Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems. Optimization 40 (1997), 171-192.
DOI |
MR 1620380
[12] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York, 1996.
MR 1363487 |
Zbl 0840.93001
[13] Kambalimath, S., Deka, P. C.:
A basic review of fuzzy logic applications in hydrology and water resources. Appl. Water Sci. 10 (2020), 8, 1-14.
DOI
[14] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.:
Markov-type fuzzy decision processes with a discounted reward on a closed interval. Eur. J. Oper. Res. 92 (1996), 3, 649-662.
DOI |
MR 1328908
[15] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.:
Markov decision processes with fuzzy rewards. J. Nonlinear Convex Anal. 4 (1996), 1, 105-116.
MR 1986973
[16] Kurano, M., Hosaka, M., Song, J., Huang, Y.:
Controlled Markov set-chains with discounting. J. Appl. Prob. 35 (1998), 3, 293-302.
DOI |
MR 1641785
[17] López-Díaz, M., Ralescu, D. A.:
Tools for fuzzy random variables: embeddings and measurabilities. Comput. Statist. Data Anal. 51 (2006), 109-114.
DOI |
MR 2297590
[18] Puri, M. L., Ralescu, D. A.:
Fuzzy random variable. J. Math. Anal. Appl. 114 (1986), 402-422.
MR 0833596
[19] Rani, D., Gulati, T. R.:
A new approach to solve unbalanced transportation problems in imprecise environment. J. Transp. Secur. 7 (2014), 3, 277-287.
DOI
[20] Rani, D., Gulati, T. R., Kumar, A.:
A method for unbalanced transportation problems in fuzzy environment. Sadhana 39 (2014), 3, 573-581.
DOI |
MR 3225832
[21] Rezvani, S., Molani, M.:
Representation of trapezoidal fuzzy numbers with shape function. Ann. Fuzzy Math. Inform. 8 (2014), 89-112.
MR 3214770
[22] Semmouri, A., Jourhmane, M., Belhallaj, Z.:
Discounted Markov decision processes with fuzzy costs. Ann. Oper. Res. 295 (2020), 769-786.
DOI |
MR 4181708
[23] Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics. Wiley, New Jersey 2020.
[25] Zhou, W., Lou, D., Xu, Z.:
Review of fuzzy investment research considering modelling environment and element fusion. Int. J. Syst. Sci. 53 (2022), 9, 1958-1982.
DOI |
MR 4446001