Previous |  Up |  Next

Article

Title: Discounted Markov decision processes with fuzzy costs (English)
Author: De-Jesús-Hernández, Salvador
Author: Cruz-Suárez, Hugo
Author: Montes-de-Oca, Raúl
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 1
Year: 2025
Pages: 58-78
Summary lang: English
.
Category: math
.
Summary: This article concerns a class of discounted Markov decision processes on Borel spaces where, in contrast with the classical framework, the cost function $\widetilde C$ is a fuzzy function of a trapezoidal type, which is determined from a classical cost function $C$ by applying an affine transformation with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model with a cost function $C$ has an optimal stationary policy $f_{o}$ with the optimal cost $V_{o}$, it is shown that such a policy is also optimal for the fuzzy model with a cost function $\widetilde C$, and that the optimal fuzzy value $\tilde{V}_{o}$ is obtained from $V_{o}$ via the same transformation used to go from $C$ to $\widetilde C$. And these results are obtained with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the classical linear-quadratic model without restrictions is presented. (English)
Keyword: discounted Markov decision processes
Keyword: trapezoidal fuzzy costs
Keyword: max-order
Keyword: average ranking
MSC: 90C40
MSC: 93C42
DOI: 10.14736/kyb-2025-1-0058
.
Date available: 2025-04-07T09:37:36Z
Last updated: 2025-04-07
Stable URL: http://hdl.handle.net/10338.dmlcz/152925
.
Reference: [1] Aubin, J. P., Frankowska, H.: Set-Valued Analysis..Birkhäuser, Boston 2009. MR 2458436
Reference: [2] Bertsekas, D.: Dynamic programming and optimal control: Volume I..Athena Sci. (2012). MR 3642732
Reference: [3] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Finite-horizon and infinite-horizon Markov decision processes with trapezoidal fuzzy discounted rewards..Commun. Comput. Inf. Sci., Springer, Cham 1623 (2022), 171-192. MR 4487360
Reference: [4] Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R.: Markov decision processes on finite spaces with fuzzy total reward..Kybernetika 58 (2022), 2, 180-199. MR 4467492,
Reference: [5] Cruz-Suárez, H., Montes-de-Oca, R.: An envelope theorem and some applications to discounted Markov decision processes..Math. Oper. Res. 67 (2008), 299-321. MR 2390061,
Reference: [6] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I.: An extended version of average Markov decision processes on discrete spaces under fuzzy environment..Kybernetika 59 (2023), 1,160-178. MR 4567846,
Reference: [7] Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R.: Deterministic discounted Markov decision processes with fuzzy rewards/costs..Fuzzy Inf. Engrg. 15 (2023), 3, 274-290.
Reference: [8] Andrés-Sánchez, J. de: A systematic review of the interactions of fuzzy set theory and option pricing..Expert Syst. Appl. 223 (2023), 119868.
Reference: [9] Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets: Theory and Applications..World Scientific, Singapore 1994. MR 1337027
Reference: [10] Figueroa-García, J. C., Hernández, G., Franco, C.: A review on history, trends and perspectives of fuzzy linear programming..Oper. Res. Perspect. 9 (2022), 100247. MR 4471476,
Reference: [11] Furukawa, N.: Parametric orders on fuzzy numbers and their roles in fuzzy optimization problems..Optimization 40 (1997), 171-192. MR 1620380,
Reference: [12] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria..Springer-Verlag, New York, 1996. Zbl 0840.93001, MR 1363487
Reference: [13] Kambalimath, S., Deka, P. C.: A basic review of fuzzy logic applications in hydrology and water resources..Appl. Water Sci. 10 (2020), 8, 1-14.
Reference: [14] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov-type fuzzy decision processes with a discounted reward on a closed interval..Eur. J. Oper. Res. 92 (1996), 3, 649-662. MR 1328908,
Reference: [15] Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Markov decision processes with fuzzy rewards..J. Nonlinear Convex Anal. 4 (1996), 1, 105-116. MR 1986973
Reference: [16] Kurano, M., Hosaka, M., Song, J., Huang, Y.: Controlled Markov set-chains with discounting..J. Appl. Prob. 35 (1998), 3, 293-302. MR 1641785,
Reference: [17] López-Díaz, M., Ralescu, D. A.: Tools for fuzzy random variables: embeddings and measurabilities..Comput. Statist. Data Anal. 51 (2006), 109-114. MR 2297590,
Reference: [18] Puri, M. L., Ralescu, D. A.: Fuzzy random variable..J. Math. Anal. Appl. 114 (1986), 402-422. MR 0833596
Reference: [19] Rani, D., Gulati, T. R.: A new approach to solve unbalanced transportation problems in imprecise environment..J. Transp. Secur. 7 (2014), 3, 277-287.
Reference: [20] Rani, D., Gulati, T. R., Kumar, A.: A method for unbalanced transportation problems in fuzzy environment..Sadhana 39 (2014), 3, 573-581. MR 3225832,
Reference: [21] Rezvani, S., Molani, M.: Representation of trapezoidal fuzzy numbers with shape function..Ann. Fuzzy Math. Inform. 8 (2014), 89-112. MR 3214770
Reference: [22] Semmouri, A., Jourhmane, M., Belhallaj, Z.: Discounted Markov decision processes with fuzzy costs..Ann. Oper. Res. 295 (2020), 769-786. MR 4181708,
Reference: [23] Syropoulos, A., Grammenos, T.: A Modern Introduction to Fuzzy Mathematics..Wiley, New Jersey 2020.
Reference: [24] Zadeh, L.: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427,
Reference: [25] Zhou, W., Lou, D., Xu, Z.: Review of fuzzy investment research considering modelling environment and element fusion..Int. J. Syst. Sci. 53 (2022), 9, 1958-1982. MR 4446001,
.

Files

Files Size Format View
Kybernetika_61-2025-1_4.pdf 516.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo