Previous |  Up |  Next

Article

Title: The algebraic structure of pseudomeadow (English)
Author: Kulosman, Hamid
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 1
Year: 2024
Pages: 13-30
Summary lang: English
.
Category: math
.
Summary: The purpose of this paper is to study the commutative pseudomeadows, the structure which is defined in the same way as commutative meadows, except that the existence of a multiplicative identity is not required. We extend the characterization of finite commutative meadows, given by I. Bethke, P. Rodenburg, and A. Sevenster in their paper (2015), to the case of commutative pseudomeadows with finitely many idempotents. We also extend the well-known characterization of general commutative meadows as the subdirect products of fields to the case of commutative pseudomeadows. Finally, we investigate localizations of commutative pseudomeadows. (English)
Keyword: absolutely flat ring
Keyword: direct product of fields
Keyword: idempotent
Keyword: meadow
Keyword: pseudomeadow
Keyword: pseudoring
Keyword: subdirect product of fields
Keyword: von Neumann regular ring
MSC: 08A05
MSC: 08A70
MSC: 08A99
MSC: 08B26
MSC: 13M99
MSC: 68Q65
DOI: 10.14712/1213-7243.2024.014
.
Date available: 2025-04-24T07:44:04Z
Last updated: 2025-04-25
Stable URL: http://hdl.handle.net/10338.dmlcz/152941
.
Reference: [1] Bergstra J. A., Bethke I.: Subvarieties of the variety of meadows.Sci. Ann. Comput. Sci. 27 (2017), no. 1, 1–18. MR 3798461
Reference: [2] Bethke I., Rodenburg P., Sevenster A.: The structure of finite meadows.J. Log. Algebr. Methods Program. 84 (2015), no. 2, 276–282. MR 3310420, 10.1016/j.jlamp.2014.08.004
Reference: [3] Birkhoff G.: Subdirect unions in universal algebras.Bull. Amer. Math. Soc. 50 (1944), 764–768. MR 0010542, 10.1090/S0002-9904-1944-08235-9
Reference: [4] Bourbaki N.: Elements of Mathematics. Commutative Algebra.Hermann, Paris; Addison-Wesley Publishing, Reading, 1972. MR 0360549
Reference: [5] McCoy N. H.: Subrings of infinite direct sums.Duke Math. J. 4 (1938), no. 3, 486–494. MR 1546070, 10.1215/S0012-7094-38-00441-7
Reference: [6] Goodearl K. R.: Von Neumann Regular Rings.Monographs and Studies in Mathematics, 4, Pitman, Boston, Mass.-London, 1979. Zbl 0841.16008, MR 0533669
Reference: [7] Kaplansky I.: Commutative Rings.University of Chicago Press, Chicago, London, 1974. Zbl 0296.13001, MR 0345945
Reference: [8] Köthe G.: Abstrakte Theorie nichtkommutativer Ringe mit einer Anwendung auf die Darstellungstheorie kontinuierlicher Gruppen.Math. Ann. 103 (1930), no. 1, 545–572. MR 1512637, 10.1007/BF01455710
Reference: [9] Kulosman H.: Review MR3310420 for Mathematical Reviews for the paper “The structure of finite meadows".by I. Bethke, P. Rodenburg, A. Sevenster, J. Log. Algebr. Methods Program. 84 (2015), no. 2, 276–282. MR 3310420
Reference: [10] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry.Birkhäuser, Boston, 1985. Zbl 0563.13001, MR 0789602
Reference: [11] von Neumann J.: On regular rings.Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707–713. 10.1073/pnas.22.12.707
Reference: [12] Olivier J.-P.: Anneaux absolument plats universels et épimorphismes à buts réduits.Séminaire Samuel. Algèbre commutative 2 (1967/68), exp. no. 6, 1–12 (French). MR 0238836
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo