Title: | The algebraic structure of pseudomeadow (English) |
Author: | Kulosman, Hamid |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 65 |
Issue: | 1 |
Year: | 2024 |
Pages: | 13-30 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | The purpose of this paper is to study the commutative pseudomeadows, the structure which is defined in the same way as commutative meadows, except that the existence of a multiplicative identity is not required. We extend the characterization of finite commutative meadows, given by I. Bethke, P. Rodenburg, and A. Sevenster in their paper (2015), to the case of commutative pseudomeadows with finitely many idempotents. We also extend the well-known characterization of general commutative meadows as the subdirect products of fields to the case of commutative pseudomeadows. Finally, we investigate localizations of commutative pseudomeadows. (English) |
Keyword: | absolutely flat ring |
Keyword: | direct product of fields |
Keyword: | idempotent |
Keyword: | meadow |
Keyword: | pseudomeadow |
Keyword: | pseudoring |
Keyword: | subdirect product of fields |
Keyword: | von Neumann regular ring |
MSC: | 08A05 |
MSC: | 08A70 |
MSC: | 08A99 |
MSC: | 08B26 |
MSC: | 13M99 |
MSC: | 68Q65 |
DOI: | 10.14712/1213-7243.2024.014 |
. | |
Date available: | 2025-04-24T07:44:04Z |
Last updated: | 2025-04-25 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/152941 |
. | |
Reference: | [1] Bergstra J. A., Bethke I.: Subvarieties of the variety of meadows.Sci. Ann. Comput. Sci. 27 (2017), no. 1, 1–18. MR 3798461 |
Reference: | [2] Bethke I., Rodenburg P., Sevenster A.: The structure of finite meadows.J. Log. Algebr. Methods Program. 84 (2015), no. 2, 276–282. MR 3310420, 10.1016/j.jlamp.2014.08.004 |
Reference: | [3] Birkhoff G.: Subdirect unions in universal algebras.Bull. Amer. Math. Soc. 50 (1944), 764–768. MR 0010542, 10.1090/S0002-9904-1944-08235-9 |
Reference: | [4] Bourbaki N.: Elements of Mathematics. Commutative Algebra.Hermann, Paris; Addison-Wesley Publishing, Reading, 1972. MR 0360549 |
Reference: | [5] McCoy N. H.: Subrings of infinite direct sums.Duke Math. J. 4 (1938), no. 3, 486–494. MR 1546070, 10.1215/S0012-7094-38-00441-7 |
Reference: | [6] Goodearl K. R.: Von Neumann Regular Rings.Monographs and Studies in Mathematics, 4, Pitman, Boston, Mass.-London, 1979. Zbl 0841.16008, MR 0533669 |
Reference: | [7] Kaplansky I.: Commutative Rings.University of Chicago Press, Chicago, London, 1974. Zbl 0296.13001, MR 0345945 |
Reference: | [8] Köthe G.: Abstrakte Theorie nichtkommutativer Ringe mit einer Anwendung auf die Darstellungstheorie kontinuierlicher Gruppen.Math. Ann. 103 (1930), no. 1, 545–572. MR 1512637, 10.1007/BF01455710 |
Reference: | [9] Kulosman H.: Review MR3310420 for Mathematical Reviews for the paper “The structure of finite meadows".by I. Bethke, P. Rodenburg, A. Sevenster, J. Log. Algebr. Methods Program. 84 (2015), no. 2, 276–282. MR 3310420 |
Reference: | [10] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry.Birkhäuser, Boston, 1985. Zbl 0563.13001, MR 0789602 |
Reference: | [11] von Neumann J.: On regular rings.Proc. Nat. Acad. Sci. U.S.A. 22 (1936), 707–713. 10.1073/pnas.22.12.707 |
Reference: | [12] Olivier J.-P.: Anneaux absolument plats universels et épimorphismes à buts réduits.Séminaire Samuel. Algèbre commutative 2 (1967/68), exp. no. 6, 1–12 (French). MR 0238836 |
. |
Fulltext not available (moving wall 24 months)