Previous |  Up |  Next

Article

Title: A note on nonseparable Lipschitz-free spaces (English)
Author: Aliaga, Ramón J.
Author: Grelier, Guillaume
Author: Procházka, Antonín
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 1
Year: 2024
Pages: 31-44
Summary lang: English
.
Category: math
.
Summary: We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson's property ($\mathcal{C}$), Talponen's countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak$^*$ sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon--Nikodým property. (English)
Keyword: Lipschitz-free space
Keyword: nonseparable Banach space
Keyword: sequentially compact
Keyword: Radon--Nikodým property
MSC: 46B20
MSC: 46B26
MSC: 46E15
DOI: 10.14712/1213-7243.2025.003
.
Date available: 2025-04-24T07:46:11Z
Last updated: 2025-04-25
Stable URL: http://hdl.handle.net/10338.dmlcz/152942
.
Reference: [1] Albiac F., Kalton N. J.: Topics in Banach Space Theory.Graduate Texts in Mathematics, 233, Springer, Cham, 2016. Zbl 1094.46002, MR 3526021
Reference: [2] Aliaga R. J., Gartland C., Petitjean C., Procházka A.: Purely $1$-unrectifiable metric spaces and locally flat Lipschitz functions.Trans. Amer. Math. Soc. 375 (2022), no. 5, 3529–3567. MR 4402669
Reference: [3] Aliaga R. J., Pernecká E.: Supports and extreme points in Lipschitz-free spaces.Rev. Mat. Iberoam. 36 (2020), no. 7, 2073–2089. MR 4163992, 10.4171/rmi/1191
Reference: [4] Aliaga R. J., Pernecká E., Petitjean C., Procházka A.: Supports in Lipschitz-free spaces and applications to extremal structure.J. Math. Anal. Appl. 489 (2020), no. 1, 124128, 14 pages. MR 4083124, 10.1016/j.jmaa.2020.124128
Reference: [5] Bogachev V. I.: Measure Theory.Springer, Berlin, 2007. MR 2267655
Reference: [6] Brezis H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext, Springer, New York, 2011. MR 2759829
Reference: [7] Dancer E. N., Sims B.: Weak-star separability.Bull. Aust. Math. Soc. 20 (1979), no. 2, 253–257. MR 0557235, 10.1017/S0004972700010935
Reference: [8] Deville R., Godefroy G., Zizler V.: Smoothness and Renormings in Banach Spaces.Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, Harlow; John Wiley and Sons, New York, 1993. Zbl 0782.46019, MR 1211634
Reference: [9] Dow A., Shelah S.: On the cofinality of the splitting number.Indag. Math. (N.S.) 29 (2018), no. 1, 382–395. MR 3739621, 10.1016/j.indag.2017.01.010
Reference: [10] van Douwen E. K.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. Zbl 0561.54004, MR 0776622
Reference: [11] Fabian M. J.: Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund Spaces.Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley and Sons, New York, 1997. Zbl 0883.46011, MR 1461271
Reference: [12] Fabian M., Habala P., Hájek P., Montesinos V., Zizler V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis.CMS Books in Mathematics, Springer, New York, 2011. MR 2766381
Reference: [13] García-Lirola L., Petitjean C., Procházka A.: Injectivity of Lipschitz operators.Bull. Malays. Math. Sci. Soc. 46 (2023), no. 2, Paper No. 68, 31 pages. MR 4542688, 10.1007/s40840-023-01467-5
Reference: [14] García-Lirola L., Petitjean C., Procházka A., Rueda Zoca A.: Extremal structure and duality of Lipschitz free spaces.Mediterr. J. Math. { \bf 15} (2018), no. 9, Paper No. 69, 23 pages. MR 3778926
Reference: [15] Hájek P., Novotný M.: Some remarks on the structure of Lipschitz-free spaces.Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304. MR 3694004, 10.36045/bbms/1503453711
Reference: [16] Johnson W. B., Lindenstrauss J.: Some remarks on weakly compactly generated Banach spaces.Israel J. Math. 17 (1974), 219–230. MR 0417760, 10.1007/BF02882239
Reference: [17] Kalton N. J.: Spaces of Lipschitz and Hölder functions and their applications.Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975
Reference: [18] Kalton N. J.: Lipschitz and uniform embeddings into $\ell_\infty$.Fund. Math. 212 (2011), no. 11, 53–69. MR 2771588, 10.4064/fm212-1-4
Reference: [19] Lacey H. E.: The Isometric Theory of Classical Banach Spaces.Die Grundlehren der mathematischen Wissenschaften, 208, Springer, New Yourk, 1974. Zbl 0285.46024, MR 0493279
Reference: [20] Moors W. B., Somasundaram S.: A Gâteaux differentiability space that is not weak Asplund.Proc. Amer. Math. Soc. 134 (2006), no. 9, 2745–2754. MR 2213755, 10.1090/S0002-9939-06-08402-4
Reference: [21] Phelps R. R.: Convex Functions, Monotone Operators and Differentiability.Lecture Notes in Mathematics, 1364, Springer, Berlin, 1993. Zbl 0921.46039, MR 1238715
Reference: [22] Raja M.: Super WCG Banach spaces.J. Math. Anal. Appl. 439 (2016), no. 1, 183–196. MR 3474357, 10.1016/j.jmaa.2016.02.057
Reference: [23] Rudin W.: Real and Complex Analysis.McGraw-Hill Bool Co., New York, 1987. Zbl 1038.00002, MR 0924157
Reference: [24] Talponen J.: Lindelöf type of generalization of separability in Banach spaces.Topology Appl. 156 (2009), no. 5, 915–925. MR 2498924, 10.1016/j.topol.2008.11.009
Reference: [25] Weaver N.: Subalgebras of little Lipschitz algebras.Pacific J. Math. 173 (1996), no. 1, 283–293. MR 1387803, 10.2140/pjm.1996.173.283
Reference: [26] Weaver N.: Lipschitz Algebras.World Scientific Publishing Co., Hackensack, 2018. MR 3792558
Reference: [27] Zizler V.: Nonseparable Banach spaces.in Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, pages 1743–1816. Zbl 1041.46009, MR 1999608
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo