Previous |  Up |  Next

Article

Title: Inequalities involving norm and numeri\nobreak cal radius of Hilbert space operators (English)
Author: Goudarzi, Nasrollah
Author: Heydarbeygi, Zahra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 65
Issue: 1
Year: 2024
Pages: 45-52
Summary lang: English
.
Category: math
.
Summary: This paper presents several numerical radii and norm inequalities for Hilbert space operators. These inequalities improve some earlier related inequalities. For an operator $A$, we prove that \begin{align*} \omega^{2}(A)\le & \Big\| \frac{A^{*}A+AA^{*}}{2} -\frac{1}{2R}\big(( 1-t){{A}^{*}}A+tA{{A}^{*}} &-((1-t)(A^{*}A)^{1/2}+( AA^{*})^{1/2} )^{2} \big) \Big\| \end{align*} where $R=\max\{t,1-t\}$ and $0\le t\le 1$. (English)
Keyword: bounded linear operator
Keyword: numerical radius
Keyword: operator norm
Keyword: inequality
MSC: 47A12
MSC: 47A30
MSC: 47A63
DOI: 10.14712/1213-7243.2025.006
.
Date available: 2025-04-24T07:47:35Z
Last updated: 2025-04-25
Stable URL: http://hdl.handle.net/10338.dmlcz/152943
.
Reference: [1] Bhatia R.: Positive Definite Matrices.Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2007. MR 2284176
Reference: [2] Furuichi S., Moradi H. R., Sababheh M.: New inequalities for interpolational operator means.J. Math. Inequal. 15 (2021), no. 1, 107–116. MR 4364630, 10.7153/jmi-2021-15-10
Reference: [3] El-Haddad M., Kittaneh F.: Numerical radius inequalities for Hilbert space operators. II.Studia Math. 182 (2007), no. 2, 133–140. MR 2338481, 10.4064/sm182-2-3
Reference: [4] Hirzallah O., Kittaneh F., Shebrawi K.: Numerical radius inequalities for certain $ 2 \times 2 $ operator matrices.Integral Equations Operator Theory 71 (2011), no. 2, 129–147. MR 2822431
Reference: [5] Kittaneh F.: Notes on some inequalities for Hilbert space operators.Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. MR 0944864, 10.2977/prims/1195175202
Reference: [6] Kittaneh F.: Numerical radius inequalities for Hilbert space operators.Studia Math. 168 (2005), no. 1, 73–80. MR 2133388, 10.4064/sm168-1-5
Reference: [7] Kittaneh F., Moradi H. R.: Cauchy–Schwarz type inequalities and applications to numerical radius inequalities.Math. Inequal. Appl. 23 (2020), no. 3, 1117–1125. MR 4128973
Reference: [8] Moradi H. R., Sababheh M.: More accurate numerical radius inequalities (II).Linear Multilinear Algebra 69 (2021), no. 5, 921–933. MR 4230456, 10.1080/03081087.2019.1703886
Reference: [9] Omidvar M. E., Moradi H. R.: Better bounds on the numerical radii of Hilbert space operators.Linear Algebra Appl. 604 (2020), 265–277. MR 4121102
Reference: [10] Omidvar M. E., Moradi H. R.: New estimates for the numerical radius of Hilbert space operators.Linear Multilinear Algebra 69 (2021), no. 5, 946–956. MR 4230458, 10.1080/03081087.2020.1810200
Reference: [11] Sababheh M.: Convexity and matrix means.Linear Algebra Appl. 506 (2016), 588–602. MR 3530695
Reference: [12] Sababheh M., Conde C., Moradi H. R.: A convex-block approach for numerical radius inequalities.arXiv:2302.06777v1 [math.FA] (2023), 17 pages. MR 4754480
Reference: [13] Sababheh M., Moradi H. R.: More accurate numerical radius inequalities (I).Linear Multilinear Algebra. 69 (2021), no. 10, 1964–1973. MR 4279169
Reference: [14] Sababheh M., Moradi H. R., Heydarbeygi Z.: Buzano, Kreĭn and Cauchy–Schwarz inequalities.Oper. Matrices. 16 (2022), no. 1, 239–250. MR 4428609, 10.7153/oam-2022-16-19
Reference: [15] Sheybani S., Sababheh M., Moradi H. R.: Weighted inequalities for the numerical radius.Vietnam J. Math. 51 (2023), no. 2, 363–377. MR 4545272, 10.1007/s10013-021-00533-4
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo