Previous |  Up |  Next

Article

Title: The Dirichlet-to-Neumann operator on rough domains with finite volume (English)
Author: ter Elst, A. F. M.
Author: Narula, Varun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 421-436
Summary lang: English
.
Category: math
.
Summary: Using a variational formulation we consider the Dirichlet-to-Neumann operator on a connected open set $\Omega \subset \mathbb {R}^d$ of finite volume, assuming only that the surface measure is locally finite on the boundary. Then the boundary may have infinite measure and trace properties become delicate. We show that this has consequences for the kernel of the Dirichlet-to-Neumann operator and characterise the situation in which a trace on $\Omega $ both exists and is unique. (English)
Keyword: Dirichlet-to-Neumann operator
Keyword: trace
Keyword: form method
Keyword: rough boundary
MSC: 46E35
MSC: 47A07
DOI: 10.21136/CMJ.2025.0362-23
.
Date available: 2025-05-20T11:42:44Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152950
.
Reference: [1] Arendt, W., Elst, A. F. M. ter: The Dirichlet-to-Neumann operator on rough domains.J. Differ. Equations 251 (2011), 2100-2124. Zbl 1241.47036, MR 2823661, 10.1016/j.jde.2011.06.017
Reference: [2] Arendt, W., Elst, A. F. M. ter: Sectorial forms and degenerate differential operators.J. Oper. Theory 67 (2012), 33-72. Zbl 1243.47009, MR 2881534
Reference: [3] Arendt, W., Warma, M.: Dirichlet and Neumann boundary conditions: What is in between?.J. Evol. Equ. 3 (2003), 119-135. Zbl 1044.31005, MR 1977430, 10.1007/s000280300005
Reference: [4] Arendt, W., Warma, M.: The Laplacian with Robin boundary conditions on arbitrary domains.Potential Anal. 19 (2003), 341-363. Zbl 1028.31004, MR 1988110, 10.1023/A:1024181608863
Reference: [5] Daners, D.: Robin boundary value problems on arbitrary domains.Trans. Am. Math. Soc. 352 (2000), 4207-4236. Zbl 0947.35072, MR 1650081, 10.1090/S0002-9947-00-02444-2
Reference: [6] Daners, D.: Principal eigenvalues for generalised indefinite Robin problems.Potential Anal. 38 (2013), 1047-1069. Zbl 1264.35152, MR 3042694, 10.1007/s11118-012-9306-9
Reference: [7] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions.Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660, 10.1201/b18333
Reference: [8] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations.Torres Fremlin, Colchester (2003). Zbl 1165.28001, MR 2462280
Reference: [9] Maz'ya, V. G.: Sobolev Spaces: With Applications to Elliptic Partial Differential Equations.Grundlehren der mathematischen Wissenschaften 342. Springer, Berlin (2011). Zbl 1217.46002, MR 2777530, 10.1007/978-3-642-15564-2
Reference: [10] Sauter, M.: Uniqueness of the approximative trace.Indiana Univ. Math. J. 69 (2020), 171-204. Zbl 1453.46034, MR 4077160, 10.1512/iumj.2020.69.8106
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo