Previous |  Up |  Next

Article

Title: On products of prime element orders in finite groups (English)
Author: Saha, Subhrajyoti
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 437-444
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group. The functions $\psi (G)$ and $\psi _{*}(G)$ denote the sum of the element orders and the sum of the prime element orders of $G$, respectively. Significant results related to the study of these functions have been published recently. Further, the function $R(G)$ was introduced to denote the product of the element orders of $G$. We introduce ${R_{*}}(G)$, which denotes the product of the prime element orders of a finite group $G$. We find a lower bound for ${R_{*}}$ on the set of groups of the same order and deduce a result on nilpotent groups using ${R_{*}}$. (English)
Keyword: finite group
Keyword: cyclic group
Keyword: nilpotent group
Keyword: element order
MSC: 20B05
MSC: 20D60
DOI: 10.21136/CMJ.2025.0481-23
.
Date available: 2025-05-20T11:43:16Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152951
.
Reference: [1] Amiri, H., Amiri, S. M. Jafarian: Sum of element orders on finite groups of the same order.J. Algebra Appl. 10 (2011), 187-190. Zbl 1217.20015, MR 2795731, 10.1142/S0219498811005385
Reference: [2] Amiri, H., Amiri, S. M. Jafarian, Isaacs, I. M.: Sums of element orders in finite groups.Commun. Algebra 37 (2009), 2978-2980. Zbl 1183.20022, MR 2554185, 10.1080/00927870802502530
Reference: [3] Beddani, C., Messirdi, W.: Sums of prime element orders in finite groups.J. Taibah Univ. Sci. 12 (2018), 294-298. 10.1080/16583655.2018.1468398
Reference: [4] Chew, C. Y., Chin, A. Y. M., Lim, C. S.: A recursive formula for the sum of element orders of finite abelian groups.Result. Math. 72 (2017), 1897-1905. Zbl 1378.20035, MR 3735531, 10.1007/s00025-017-0710-8
Reference: [5] Harrington, J., Jones, L., Lamarche, A.: Characterizing finite groups using the sum of the orders of the elements.Int. J. Comb. 2014 (2014), Article ID 835125, 8 pages. Zbl 1309.20020, MR 3280890, 10.1155/2014/835125
Reference: [6] Amiri, S. M. Jafarian, Amiri, M.: Sum of the products of the orders of two distinct elements in finite groups.Commun. Algebra 42 (2014), 5319-5328. Zbl 1321.20025, MR 3223642, 10.1080/00927872.2013.839697
Reference: [7] Pakianathan, J., Shankar, K.: Nilpotent numbers.Am. Math. Mon. 107 (2000), 631-634. Zbl 0986.20026, MR 1786236, 10.1080/00029890.2000.12005248
Reference: [8] Tărnăuceanu, M.: An arithmetic method of counting the subgroups of a finite abelian group.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 53 (2010), 373-386. Zbl 1231.20051, MR 2777681
Reference: [9] Tărnăuceanu, M.: A note on the product of element orders of finite abelian groups.Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 1123-1126. Zbl 1280.20058, MR 3108800
Reference: [10] Tărnăuceanu, M.: Detecting structural properties of finite groups by the sum of element orders.Isr. J. Math. 238 (2020), 629-637. Zbl 1483.20048, MR 4145812, 10.1007/s11856-020-2033-9
Reference: [11] Tărnăuceanu, M., Fodor, D. G.: On the sum of element orders of finite abelian groups.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 60 (2014), 1-7. Zbl 1299.20059, MR 3252452, 10.2478/aicu-2013-0013
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo