Previous |  Up |  Next

Article

Title: Composition operators on variable exponent Bloch spaces (English)
Author: He, Xin
Author: Tong, Cezhong
Author: Yang, Zicong
Author: Zhou, Zehua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 681-698
Summary lang: English
.
Category: math
.
Summary: We consider the composition operator $C_{\varphi }$ on the variable exponent Bloch space $\mathcal {B}^{\alpha ({\cdot })}$, which consists of all analytic functions $f$ on the unit disk $\mathbb {D}$ such that $$ \sup \{(1-|z|^2)^{\alpha (z)}|f'(z)| \colon z\in \mathbb {D} \}<\infty . $$ Here, $\alpha (z)$ is a log-Hölder continuous function on $\mathbb {D}$. The boundedness and compactness of $C_{\varphi }$ are characterized. Besides, we show that $(1-|z|^2)^{\alpha (z)}f'(z)$ is Lipschitz continuous in terms of the pseudo-hyperbolic metric under the Lipschitz continuity of $\alpha (z)$. By using this result, we study the bounded and compact difference $C_{\varphi }-C_{\psi }$ of two composition operators on $\mathcal {B}^{\alpha ({\cdot })}$, and the boundedness from below of $C_{\varphi }$ is partially described. (English)
Keyword: variable exponent Bloch space
Keyword: composition operator
Keyword: difference
Keyword: boundedness from below
MSC: 32A18
MSC: 46E15
MSC: 47B33
DOI: 10.21136/CMJ.2025.0390-24
.
Date available: 2025-05-20T11:51:34Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152966
.
Reference: [1] Bourdon, P. S.: Components of linear-fractional composition operators.J. Math. Anal. Appl. 279 (2003), 228-245. Zbl 1043.47021, MR 1970503, 10.1016/S0022-247X(03)00004-0
Reference: [2] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 105 (2014), 41-49. Zbl 1288.30059, MR 3200739, 10.1016/j.na.2014.04.001
Reference: [3] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces.Mediterr. J. Math. 13 (2016), 3525-3536. Zbl 1354.30049, MR 3554324, 10.1007/s00009-016-0701-0
Reference: [4] Chacón, G. R., Rafeiro, H., Vallejo, J. C.: Carleson measures for variable exponent Bergman spaces.Complex Anal. Oper. Theory 11 (2017), 1623-1638. Zbl 1387.30081, MR 3702967, 10.1007/s11785-016-0573-0
Reference: [5] Chen, H.: Boundedness from below of composition operators on the Bloch spaces.Sci. China, Ser. A 46 (2003), 838-846. Zbl 1097.47509, MR 2029195, 10.1360/02ys0212
Reference: [6] Chen, H., Gauthier, P.: Boundednesss from below of composition operators on $\alpha$-Bloch spaces.Can. Math. Bull. 51 (2008), 195-204. Zbl 1148.30017, MR 2414207, 10.4153/CMB-2008-021-2
Reference: [7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). Zbl 0873.47017, MR 1397026, 10.1201/9781315139920
Reference: [8] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [9] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [10] Dieudonne, A.: Hankel operators between Bergman spaces with variable exponents on the unit ball of $\Bbb{C}^n$.Complex Anal. Oper. Theory 16 (2022), Article ID 40, 37 pages. Zbl 1487.32024, MR 4396709, 10.1007/s11785-022-01223-w
Reference: [11] Ferguson, T.: Equivalence among variable exponent Hardy or Bergman spaces.J. Math. Anal. Appl. 475 (2019), 173-189. Zbl 1482.46033, MR 3944316, 10.1016/j.jmaa.2019.02.028
Reference: [12] Ghatage, P., Yan, J., Zheng, D.: Composition operators with closed range on the Bloch space.Proc. Am. Math. Soc. 129 (2001), 2039-2044. Zbl 0984.47024, MR 1825915, 10.1090/S0002-9939-00-05771-3
Reference: [13] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces.J. Oper. Theory 57 (2007), 229-242. Zbl 1174.47019, MR 2328996
Reference: [14] Karapetyants, A., Restrepo, J. E.: Generalized Hölder type spaces of harmonic functions in the unit ball and half space.Czech. Math. J. 70 (2020), 675-691. Zbl 1524.42045, MR 4151698, 10.21136/CMJ.2019.0431-18
Reference: [15] Karapetyants, A., Restrepo, J. E.: Composition operators on holomorphic variable exponent spaces.Math. Methods Appl. Sci. 45 (2022), 8566-8577. Zbl 07777606, MR 4475224, 10.1002/mma.7307
Reference: [16] Karapetyants, A., Samko, S.: Spaces BMO$^{p(\cdot)}(\Bbb{D})$ of a variable exponent $p(z)$.Georgian Math. J. 17 (2010), 529-542. Zbl 1201.30072, MR 2719633, 10.1515/gmj.2010.028
Reference: [17] Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc.Complex Var. Elliptic Equ. 61 (2016), 1090-1106. Zbl 1351.30042, MR 3500518, 10.1080/17476933.2016.1140750
Reference: [18] Li, B., Ouyang, C.: Higher radial derivative of Bloch type functions.Acta Math. Sci., Ser. B, Engl. Ed. 22 (2002), 433-445. Zbl 1032.32005, MR 1938530, 10.1016/S0252-9602(17)30315-6
Reference: [19] Madigan, K., Matheson, A.: Compact composition operators on the Bloch space.Trans. Am. Math. Soc. 347 (1995), 2679-2687. Zbl 0826.47023, MR 1273508, 10.1090/S0002-9947-1995-1273508-X
Reference: [20] Moorhouse, J.: Compact differences of composition operators.J. Funct. Anal. 219 (2005), 70-92. Zbl 1087.47032, MR 2108359, 10.1016/j.jfa.2004.01.012
Reference: [21] Ohno, S., Stroethoff, K., Zhao, R.: Weighted composition operators between Bloch-type spaces.Rocky Mt. J. Math. 33 (2003), 191-215. Zbl 1042.47018, MR 1994487, 10.1216/rmjm/1181069993
Reference: [22] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics. Springer, New York (1993). Zbl 0791.30033, MR 1237406, 10.1007/978-1-4612-0887-7
Reference: [23] Shapiro, J. H., Sundberg, C.: Isolation amongst the composition operators.Pac. J. Math. 145 (1990), 117-152. Zbl 0732.30027, MR 1066401, 10.2140/pjm.1990.145.117
Reference: [24] Shi, Y., Li, S.: Differences of composition operators on Bloch type spaces.Complex Anal. Oper. Theory 11 (2017), 227-242. Zbl 1361.30098, MR 3595984, 10.1007/s11785-016-0595-7
Reference: [25] Yang, Z.-C., Zhou, Z.-H.: Atomic decomposition and composition operators on variable exponent Bergman spaces.Mediterr. J. Math. 19 (2022), Article ID 10, 20 pages. Zbl 1482.30130, MR 4343053, 10.1007/s00009-021-01885-4
Reference: [26] Zhu, K.: Bloch type spaces of analytic functions.Rocky Mt. J. Math. 23 (1993), 1143-1177. Zbl 0787.30019, MR 1245472, 10.1216/rmjm/1181072549
Reference: [27] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138. AMS, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo