Previous |  Up |  Next

Article

Title: Generalized semidirect sums of Lie algebras and their modules (English)
Author: Lu, Rui
Author: Tan, Youjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 2
Year: 2025
Pages: 699-742
Summary lang: English
.
Category: math
.
Summary: Generalized semidirect sums of Lie algebras and their modules are introduced, which are not necessarily (non)-Abelian extensions and may be applied to construct Lie algebras from modules. Some properties of generalized semidirect sums are described. In particular, it is shown that finite dimensional non-solvable Lie algebras can be realized as generalized semidirect sums. The complete classification up to isomorphism of all generalized semidirect sums of $\mathfrak {sl}_2$ and its finite-dimensional irreducible modules is given. (English)
Keyword: Lie algebra
Keyword: module
Keyword: generalized semidirect sum
MSC: 17B05
MSC: 17B10
DOI: 10.21136/CMJ.2025.0396-24
.
Date available: 2025-05-20T11:52:04Z
Last updated: 2025-05-26
Stable URL: http://hdl.handle.net/10338.dmlcz/152967
.
Reference: [1] Bressler, P.: On the classification of Abelian extensions.São Paulo J. Math. Sci. 6 (2012), 71-80. Zbl 1293.17023, MR 3076213, 10.11606/issn.2316-9028.v6i1p71-80
Reference: [2] Carter, R.: Lie Algebras of Finite and Affine Type.Cambridge Studies in Advanced Mathematics 96. Cambridge University Press, Cambridge (2005). Zbl 1110.17001, MR 2188930, 10.1017/CBO9780511614910
Reference: [3] Frégier, Y.: Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid.J. Algebra 398 (2014), 243-257. Zbl 1367.17015, MR 3123761, 10.1016/j.jalgebra.2013.07.035
Reference: [4] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory.Graduate Texts in Mathematics 9. Springer, New York (1972). Zbl 0254.17004, MR 0323842, 10.1007/978-1-4612-6398-2
Reference: [5] Inassaridze, N., Khmaladze, E., Ladra, M.: Non-abelian cohomology and extensions of Lie algebras.J. Lie Theory 18 (2008), 413-432. Zbl 1179.17019, MR 2431125
Reference: [6] Moody, R. V., Pianzola, A.: Lie Algebras with Triangular Decompositions.Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1995). Zbl 0874.17026, MR 1323858
Reference: [7] Neeb, K.-H.: Non-abelian extensions of topological Lie algebras.Commun. Algebra 34 (2006), 991-1041. Zbl 1158.17308, MR 2208114, 10.1080/00927870500441973
Reference: [8] Onishchik, A. L., Vinberg, É. B.: Foundations of Lie theory.Lie Groups and Lie Algebras I. Foundations of Lie theory. Lie Transformation Groups Encyclopaedia of Mathematical Sciences 20. Springer, Berlin (1993), 1-94. Zbl 0781.22003, MR 1306738
Reference: [9] Onishchik, A. L., (Eds.), E. B. Vinberg: Lie Groups and Lie Algebras III. Structure of Lie Groups and Lie Algebras.Encyclopaedia of Mathematical Sciences 41. Springer Berlin (1994). Zbl 0797.22001, MR 1056486
Reference: [10] Weibel, C. A.: An Introduction to Homological Algebra.Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1994). Zbl 0834.18001, MR 1269324, 10.1017/CBO9781139644136
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo