Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Lie algebra; module; generalized semidirect sum
Summary:
Generalized semidirect sums of Lie algebras and their modules are introduced, which are not necessarily (non)-Abelian extensions and may be applied to construct Lie algebras from modules. Some properties of generalized semidirect sums are described. In particular, it is shown that finite dimensional non-solvable Lie algebras can be realized as generalized semidirect sums. The complete classification up to isomorphism of all generalized semidirect sums of $\mathfrak {sl}_2$ and its finite-dimensional irreducible modules is given.
References:
[1] Bressler, P.: On the classification of Abelian extensions. São Paulo J. Math. Sci. 6 (2012), 71-80. DOI 10.11606/issn.2316-9028.v6i1p71-80 | MR 3076213 | Zbl 1293.17023
[2] Carter, R.: Lie Algebras of Finite and Affine Type. Cambridge Studies in Advanced Mathematics 96. Cambridge University Press, Cambridge (2005). DOI 10.1017/CBO9780511614910 | MR 2188930 | Zbl 1110.17001
[3] Frégier, Y.: Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid. J. Algebra 398 (2014), 243-257. DOI 10.1016/j.jalgebra.2013.07.035 | MR 3123761 | Zbl 1367.17015
[4] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9. Springer, New York (1972). DOI 10.1007/978-1-4612-6398-2 | MR 0323842 | Zbl 0254.17004
[5] Inassaridze, N., Khmaladze, E., Ladra, M.: Non-abelian cohomology and extensions of Lie algebras. J. Lie Theory 18 (2008), 413-432. MR 2431125 | Zbl 1179.17019
[6] Moody, R. V., Pianzola, A.: Lie Algebras with Triangular Decompositions. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1995). MR 1323858 | Zbl 0874.17026
[7] Neeb, K.-H.: Non-abelian extensions of topological Lie algebras. Commun. Algebra 34 (2006), 991-1041. DOI 10.1080/00927870500441973 | MR 2208114 | Zbl 1158.17308
[8] Onishchik, A. L., Vinberg, É. B.: Foundations of Lie theory. Lie Groups and Lie Algebras I. Foundations of Lie theory. Lie Transformation Groups Encyclopaedia of Mathematical Sciences 20. Springer, Berlin (1993), 1-94. MR 1306738 | Zbl 0781.22003
[9] Onishchik, A. L., (Eds.), E. B. Vinberg: Lie Groups and Lie Algebras III. Structure of Lie Groups and Lie Algebras. Encyclopaedia of Mathematical Sciences 41. Springer Berlin (1994). MR 1056486 | Zbl 0797.22001
[10] Weibel, C. A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1994). DOI 10.1017/CBO9781139644136 | MR 1269324 | Zbl 0834.18001
Partner of
EuDML logo