[1] Alguliyev, R. M., Aliguliyev, R. M., Alakbarov, R. G.: Constrained k-means algorithm for resource allocation in mobile cloudlets. Kybernetika 59 (2023), 1, 88-109.
[3] Bezdek, J. C.:
Pattern Recognition with Fuzzy Objective Function Algorithms. Springer, New York 1981.
MR 0631231 |
Zbl 0503.68069
[4] Castellano, G., Vessio, G.:
A deep learning approach to clustering visual arts. Int. J. Computer Vision 130 (2022), 11, 2590-2605.
DOI
[5] Chen, Y., Zhou, S., Zhang, X., Liu, D., Fu, C.:
Improved fuzzy c-means clustering by varying the fuzziness parameter. Pattern Recogn. Lett. 157 (2022), 60-66.
DOI
[6] Coppi, R., D'Urso, P., Giordani, P.:
A note on the algorithms for determining the model structureFuzzy and possibilistic clustering for fuzzy data. Comput. Statist. Data Analysis 56 (2012), 4, 915-927.
DOI |
MR 2888734
[7] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L.: Imagenet: A largescale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009, pp. 248-255.
[8] Ding, W., Abdel-Basset, M., Hawash, H., Pedrycz, W.:
Multimodal infant brain segmentation by fuzzy-informed deep learning. IEEE Trans. Fuzzy Systems 30 (2021), 4, 1088-1101.
DOI
[9] D'Urso, P., Giovanni, L. De:
Robust clustering of imprecise data. Chemometr. Intell. Labor. Systems 136 (2014), 58-80.
DOI
[10] D'Urso, P., Giordani, P.:
A weighted fuzzy c-means clustering model for fuzzy data. Comput. Statist. Data Analysis 50 (2006), 6, 1496-1523.
DOI |
MR 2222055
[11] D'Urso, P., Leski, J. M.:
Fuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averaging. Fuzzy Sets Systems 389 (2020), 1-28.
DOI |
MR 4090410
[12] Eskandari, E., Khastan, A.:
A robust fuzzy clustering model for fuzzy data based on an adaptive weighted L1 norm. Iranian J. Fuzzy Systems 20 (2023), 6, 1-20.
MR 4685521
[13] Eskandari, E., Khastan, A.: Investigating the effect of using different loss functions on the performance of the fuzzy clustering model for fuzzy data in the presence of outlier data. Fuzzy Systems Appl. 7 (2024), 1, 109-123.
[14] Eskandari, E., Khastan, A., Tomasiello, S.: Improved determination of the weights in a clustering approach based on a weighted dissimilarity measure between fuzzy data. In: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 2022, pp. 1-6.
[15] Feng, Q., Chen, L., Chen, C. L. P., Guo, L.:
Deep fuzzy clustering - a representation learning approach. IEEE Trans. Fuzzy Systems 28 (2020), 7, 1420-1433.
DOI
[16] Ferraro, M. B., Giordani, P.:
Possibilistic and fuzzy clustering methods for robust analysis of non-precise data. Int. J. Approx. Reasoning 88 (2017), 23-38.
DOI |
MR 3679135
[17] Figueroa-Garcia, J. C., Varón-Gaviria, C. A., Barbosa-Fontecha, J. L.:
Fuzzy random variable generation using $\alpha$-cuts. IEEE Trans. Fuzzy Systems 29 (2019), 3, 539-548.
DOI 10.1109/TFUZZ.2019.2956668
[18] Gao, Y., Wang, W., Xie, J., Pan, J.:
A new robust fuzzy c-means clustering method based on adaptive elastic distance. Knowledge Based Systems 237 (2022), 107769.
DOI
[19] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016, pp. 770-778.
[20] Huang, K., Zhang, Y., Cheng, H. D., Xing, P., Zhang, B.:
Semantic segmentation of breast ultrasound image with fuzzy deep learning network and breast anatomy constraints. Neurocomputing 450 (2021), 319-335.
DOI
[21] Hung, W., Yang, M.:
Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation. Fuzzy Sets Systems 150 (2005), 3, 561-577.
DOI |
MR 2119383
[22] Kartli, N., Bostanci, E., Guzel, M. S.:
Heuristic algorithm for an optimal solution of fully fuzzy transportation problem. Computing 106 (2024), 10, 3195-3227.
DOI |
MR 4794582
[23] Rand, W. M.:
Objective criteria for the evaluation of clustering methods. J. American Statist. Assoc. 66 (1971), 336, 846-850.
DOI
[24] Su, L., Cao, X.:
Fuzzy autoencoder for multiple change detection in remote sensing images. J. Appl. Remote Sensing 12 (2018), 3, 035014.
DOI
[25] Wei, X., Lu, D., Cao, X., Su, L., Wang, L., Guo, H., Hou, Y., He, X.:
A fuzzy artificial neural network-based method for Cerenkov luminescence tomography. AIP Advances 9 (2019), 6, 065105.
DOI 10.1063/1.5088234
[26] Yang, M., Ko, C.:
On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets Systems 84 (1996), 1, 49-60.
DOI |
MR 1419650