[1] Zaferanieh, M. Abareshi abd M.:
A bi-level capacitated p-median facility location problem with the most likely allocation solution. Transport. Res. Part B: Methodological 123 (2019), 1-20.
DOI
[2] Abouee-Mehrizi, H., Baron, O.:
State-dependent m/g/1 queueing systems. Queueing Systems 82 (2016), 121-148.
DOI |
MR 3457013
[3] Adeleke, O. J., Olukanni, D. O.:
Facility location problems: models, techniques, and applications in waste management. Recycling 5 (2020), 10.
DOI
[4] Alstrup, S., Lauridsen, P. W., Sommerlund, P., Thorup, M.: Finding cores of limited length. In: Algorithms and Data Structures: 5th International Workshop, WADS'97, Halifax 1997, Proceedings 5, Springer, pp. 45-54.
[5] Avella, P., Boccia, M., Sforza, A., Vasilev, snd I.:
A branch-and-cut algorithm for the median-path problem. Comput. Optim. Appl. 32 (2005), 215-230.
DOI |
MR 2207845
[6] Batta, R., Berman, O.:
A location model for a facility operating as an m/g/k queue. Networks 19 (1989), 717-728.
DOI |
MR 1013756
[7] Becker, R. I., Chang, Y. I., Lari, I., Scozzari, A., Storchi, G.:
Finding the l-core of a tree. Discrete Appl. Math. 118 (2002), 25-42.
DOI |
MR 1888547
[8] Berman, 0., Drezner, Z.:
The multiple server location problem. J. Oper. Res. Soc. 58 (2007), 91-99.
DOI
[9] Berman, 0., Krass, D., Wang, J.:
Locating service facilities to reduce lost demand. IIE Trans. 38 (2006), 933-946.
DOI
[10] Berman, 0., Larson, R. C., Chiu, S. S.:
Optimal server location on a network operating as an m/g/1 queue. Oper. Ress 33 (1985), 746-771.
DOI |
MR 0797884
[11] Berman, 0., Larson, R. C., Parkan, C.:
The stochastic queue p-median problem. Transport. Sci. 21 (1987), 207-216.
DOI |
MR 0909467
[12] Berman, 0., Mandowsky, R. R.:
Location-allocation on congested networks. Europ. J. Oper. Ress 26 (1986), 238-250.
DOI |
MR 0852294
[13] Chen, C., Yao, B., Chen, G., Tian, Z.:
A queuing location allocation model for designing a capacitated bus garage system. Engrg. Optim. 54 (2022), 709-726.
DOI |
MR 4410853
[14] Chiu, S. S., Berman, O., Larson, R. C.:
Locating a mobile server queueing facility on a tree network. Management Sci. 31 (1985), 764-772.
DOI |
MR 0793874
[15] Fathali, J., Nazari, M., Mahdvar, K.: Semi-obnoxious backup 2-median problem on a tree. J. Appl. Res. Industr. Engrg. 8 (2021), 159-168.
[16] Fathali, J., Zaferanieh, M.:
The balanced 2-median and 2-maxian problems on a tree. J. Combinat. Optim. 45 (2023), 69.
DOI |
MR 4554039
[17] Gavish, B., Sridhar, S.:
Computing the 2-median on tree networks in $O(n\log n)$ time. Networks 26 (1995), 305-317.
DOI |
MR 1365024
[18] Goldman, A. J.:
Optimal center location in simple networks. Transport. Sci. 5 (1971), 212-221.
DOI |
MR 0359738
[19] Hedetniemi, S. M., Cockayne, E., Hedetniemi, S.:
Linear algorithms for finding the jordan center and path center of a tree. Transport. Sci. 15 (1981), 98-114.
DOI |
MR 0639598
[20] Kariv, 0., Hakimi, S. L.:
An algorithmic approach to network location problems. i: The p-centers. SIAM J. Appl. Math. 37 (1979), 513-538.
DOI |
MR 0549138
[21] Kong, Y. X., Shi, G. Y., Wu, R. J., Zhang, Y. C.:
k-core: Theories and applications. Physics Rep. 832 (2019), 1-32.
DOI |
MR 4035043
[22] Kovacs, G., Spens, K. M.:
Humanitarian logistics in disaster relief operations. Int. J. Phys. Distribut. Logist. Management 37 (2007), 99-114.
DOI
[23] Mohammadi, M., Jolai, F., Rostami, H.:
An m/m/c queue model for hub covering location problem. Math. Computer Modell. 54 (2011), 2623-2638.
DOI |
MR 2841808
[24] Morgan, C. A., Slater, P. J.:
A linear algorithm for a core of a tree. J. Algorithms 1 (1980), 247-258.
DOI |
MR 0604866
[25] Morgan, S. A., Agee, N. H.:
Mobile healthcare. Frontiers Health Services Management 29 (2012), 3-10.
DOI
[26] Moshtagh, M., Fathali, J., Smith, J. M.:
The stochastic queue core problem, evacuation networks, and state-dependent queues. Europ. J. Oper. Res. 269 (2018), 730-748.
DOI |
MR 3790048
[27] Moshtagh, M., Fathali, J., Smith, J. M., Mahdavi-Amiri, N.:
Finding an optimal core on a tree network with m/g/c/c state-dependent queues. Math. Methods Oper. Res. 89 (2019), 115-142.
DOI |
MR 3918542
[28] Owen, S. H., Daskin, M. S.:
Strategic facility location: A review. Europ. J. Oper. Res. 111 (1998), 423-447.
DOI
[29] Ozdamar, L., Ekinci, E., Kucukyazici, B.:
Emergency logistics planning in natural disasters. Ann. Oper. Res. 129 (2004), 217-245.
DOI |
MR 2072300
[30] Pourmohammadi, P., Tavakkoli-Moghaddam, R., Rahimi, Y., Triki, C.:
Solving a hub location routing problem with a queue system under social responsibility by a fuzzy meta-heuristic algorithm. Ann. Oper. Res. 324 (2023), 1099-1128.
DOI |
MR 4581626
[31] Slater, P. J.: Locating central paths in a graph. Transport. Sci. 16 (1982), 1-18.
[32] Tamir, A.:
An $O(pn^2)$ algorithm for the p-median and related problems on tree graphs. Oper. Res. Lett. 19 (1996), 59-64.
DOI |
MR 1405743
[33] Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh, S., A., A., Taleizadeh, Hajipour, V., Mahmoudi, A.:
Pricing and location decisions in multi-objective facility location problem with m/m/m/k queuing systems. Engrg. Optim. 49 (2017), 136-160.
DOI |
MR 3567728
[34] Wang, Q., Batta, R., Rump, C. M.:
Algorithms for a facility location problem with stochastic customer demand and immobile servers. Ann. Oper. Res. 111 (2002), 17-34.
DOI 10.1023/A:1020961732667 |
MR 1954660
[35] Zaferanieh, M., Abareshi, M., Fathali, J.:
The minimum information approach to the uncapacitated p-median facility location problem. Transport. Lett. 14 (2022), 307-316.
DOI
[36] Zaferanieh, M., J, Fathali:
Finding a core of a tree with pos/neg weight. Math. Methods Oper. Res. 76 (2012), 147-160.
DOI |
MR 2972611
[37] Zaferanieh, M., Sadra, M., Basirat, T.:
P-facility capacitated location problem with customer equilibrium decisions: a recreational case study in Mazandaran province. J. Modell. Management 19 (2024), 1883-1906.
DOI