[1] Bertsekas, D., Shreve, S. E.: Stochastic Optimal Control: The Discrete-Time Case. Academic Press Inc, New York 1996.
[2] Feinberg, E. A.:
Continuous time discounted jump Markov decision processes: a discrete-event approach. Math. Oper. Res. 29 (2004), 492-524.
DOI
[3] Bäuerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer, Heidelberg 2011.
Zbl 1236.90004
[4] Guo, X. P., Piunovskiy, A.:
Discounted continuous-time Markov decision processes with constraints: unbounded transition and loss rates. Math. Oper. Res. 36 (2011), 105-132.
DOI
[5] Guo, X. P., Hernández-Lerma, O.: Continuous-time markov decision processes: theory and applications. Springer-Verlag, Berlin 2009.
[6] Guo, X. P., Song, X. Y., Zhang, Y.:
First passage optimality for continuous-time Markov decision processes with varying discount factors and history-dependent policies. IEEE Trans. Automat. Control 59 (2013), 163-174.
DOI
[7] Hernández-Lerma, O., Lasserre, J. B.: Discrete-time Markov control processes: basic optimality criteria. Springer-Verlag, New York 1996.
[8] Huang, Y. H., Guo, X. P.:
Optimal risk probability for first passage models in semi-Markov decision processes. J. Math. Anal. Appl. 359 (2009), 404-420.
DOI
[9] Huang, Y. H., Guo, X. P.:
Finite horizon semi-Markov decision processes with application to maintenance systems. European J. Oper. Res. 212 (2011), 131-140.
DOI
[10] Huang, Y. H., Guo, X. P.:
First passage models for denumerable semi-Markov decision processes with nonnegative discounted costs. Acta. Math. Appl. Sinica 27 (2011), 177-190.
DOI |
Zbl 1235.90177
[11] Huang, Y. H., Guo, X. P., Li, Z. F.:
Minimum risk probability for finite horizon semi-Markov decision processes. J. Math. Anal. Appl. 402 (2013), 378-391.
DOI
[12] Huang, X. X., Zuo, X. L., Guo, X. P.:
A minimization problem of the risk probability in first passage semi-Markov decision processes with loss rates. Sci. China Math. 58 (2015), 1923-1938.
DOI
[13] Huo, H. F., Zuo, X. L., Guo, X. P.:
The risk probability criterion for discounted continuous-time Markov decision processes. Discrete Event Dyn. S. 27 (2017), 675-699.
DOI
[14] Huo, H. F., Guo, X. P.:
Risk probability minimization problems for continuous-time Markov decision processes on finite horizon. IEEE Trans. Autom. Control 65 (2019), 3199-3206.
DOI
[15] Janssen, J., Manca, R.: Semi-Markov Risk Models For Finance, Insurance, and Reliability. Springer, New York 2006.
[16] Lin, Y. L., Tomkins, R. J., Wang, C. L.:
Optimal models for the first arrival time distribution function in continuous time With a special case. Acta. Math. Appl. Sinica 10 (1994), 194-212.
DOI 10.1007/BF02006119
[17] Mamer, J. W.:
Successive approximations for finite horizon, semi-Markov decision processes with application to asset liquidation. Oper. Res. 34 (1986), 638-644.
DOI
[18] Sakaguchi, M., Ohtsubo, Y.:
Optimal threshold probability and expectation in semi-Markov decision processes. Appl. Math. Comput. 216 (2010), 2947-2958.
DOI
[19] Sobel, M. J.:
The variance of discounted Markov decision processes. J. Appl. Probab. 19 (1982), 794-802.
DOI |
Zbl 0503.90091
[20] Nollau, V.:
Solution of a discounted semi-markovian descision problem by successive oevarrelaxation. Optimization 39 (1997), 85-97.
DOI
[21] Ohtsubo, Y.:
Optimal threshold probability in undiscounted Markov decision processes with a target set. Appl. Math. Anal. Comp. 149 (2004), 519-532.
DOI |
MR 2033087
[22] Piunovskiy, A., Zhang, Y., Shiryaev, A. N.:
Continuous-Time Markov Decision Processes: Borel Space Models and General Control Strategies. Springer, Berlin 2020.
DOI
[23] White, D. J.:
Minimizing a threshold probability in discounted Markov decision processes. J. Math. Anal. Appl. 173 (1993), 634-646.
DOI
[24] Wen, X., Huo, H. F., Guo, X.P.:
First passage risk probability minimization for piecewise deterministic Markov decision processes. Acta Math.Appl.Sin.Engl.Ser. 38 (2022), 549-567.
DOI
[25] Wu, C., Lin, Y.:
Minimizing risk models in Markov decision processes with policies depending on target values. J. Math. Anal. Appl. 231 (1999), 47-67.
DOI
[26] Wu, X., Guo, X. P.:
First passage optimality and variance minimisation of Markov decision processes with varying discount factors. J. Appl. Prob. 52 (2015), 441-456.
DOI |
Zbl 1327.90374